TABLE OF CONTENTS.

INTRODUCTORY CHAPTER.

Resume of important Theorems and Examples from the earlier Portions of the subject.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To prove that (a \times b = b \times a)</td>
<td>1</td>
</tr>
<tr>
<td>2. To prove that ((ab) \times c = a \times (bc)) or, (= b \times (ac))</td>
<td>2</td>
</tr>
<tr>
<td>3. Formulae to be committed to memory</td>
<td>3</td>
</tr>
<tr>
<td>4. The expression (x^n - a^n) is divisible by (x - a) for all positive integral values of (n)</td>
<td>4</td>
</tr>
<tr>
<td>5. Examples in Factorisation</td>
<td>5</td>
</tr>
<tr>
<td>6. The ordinary method of finding the H. C. F. of two multinomial expressions which have no monomial factors</td>
<td>11</td>
</tr>
<tr>
<td>7. An important principle</td>
<td>13</td>
</tr>
<tr>
<td>8. The H.C.F. of three or more expressions whose factors cannot be easily found</td>
<td>15</td>
</tr>
<tr>
<td>9. L. C. M. of two expressions whose factors are not obvious by inspection</td>
<td>16</td>
</tr>
<tr>
<td>10. L. C. M. of three or more expressions whose factors are not obvious by inspection</td>
<td>16</td>
</tr>
<tr>
<td>11. A few examples in fractions</td>
<td>18</td>
</tr>
<tr>
<td>12. Solutions of some equations</td>
<td>20</td>
</tr>
</tbody>
</table>

CHAPTER I.

SQUARE AND CUBE ROOTS.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Extraction of square roots by the application of the formula (a^2 \pm 2ab + b^2 = (a \pm b)^2)</td>
<td>24</td>
</tr>
<tr>
<td>2. The ordinary method of finding the square root of a compound algebraical expression</td>
<td>26</td>
</tr>
<tr>
<td>3. Square roots of numbers</td>
<td>30</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS.

Art.

4. If the square root of a number consists of $2n+1$ figures, the first $n+1$ of them being found by the ordinary method, the remaining n may be obtained by division only

5. The ordinary method of finding the cube root of a compound algebraical expression

6. Cube Roots of Numbers

7. If the cube root of a number consists of $2n+2$ figures, the first $n+2$ of them being found by the ordinary method, the remaining n may be obtained by division only

8. Miscellaneous Examples

CHAPTER II.

INDICES.

1. Definition

2. The Index Law and the truths necessarily following from it

3. Assuming the formula $a^m \times a^n = a^{m+n}$ to be true for all values of m and n, to find meanings for quantities with fractional or negative indices

4. To prove that $(a^n)^n = a^{mn}$ is true for all values of m and n

5. To prove that $a^{n\cdot b} = (ab)^n$ for all values of n

6. Applications of the results proved in the last two articles

7. Miscellaneous Examples

CHAPTER III.

SURDS.

1. Definition

2. To express in the form of a surd the product of a rational quantity and a surd

3. A surd may sometimes be expressed as the product of a rational quantity and a surd
TABLE OF CONTENTS

Art.	Page.
4. Similar Surds | 63
5. Surds of the same order | 64
6. Multiplication and Division of Surds | 65
7. Compound Surds | 67
8. Rationalisation | 69
9. To find a factor which will rationalise any given binomial surd | 72
10. The square root of a rational quantity cannot be partly rational and partly a quadratic surd | 74
11. If \(a + \sqrt{b} = x + \sqrt{y}\), where \(a\) and \(x\) are rational and \(\sqrt{b}\) and \(\sqrt{y}\) are irrational, then will \(a = x\), and \(b = y\) | 75
12. To find the square root of \(a + \sqrt{b}\), where \(\sqrt{b}\) is a surd | 75
13. If \(3\sqrt{a} + \sqrt{b} = x + \sqrt{y}\), then will \(3\sqrt{a} - \sqrt{b} = x - \sqrt{y}\) | 77
14. Miscellaneous Examples | 79

CHAPTER IV.

RATIO AND PROPORTION.

1. Definitions | 85
2. Change of value of a ratio when the same number is added to both its terms | 86
3. Composition of ratios | 87
4. Approximate values of ratios | 87
5. Incommensurable quantities | 87
6. Definitions | 90
7. If \(a : b = c : d\), then will \(ad = bc\) | 91
8. If \(a : b = c : a\) then \(a : c = a^2 : b\) | 92
9. If \(a : b = c : d\), then \(b : a = d : c\) | 92
10. If \(a : b = c : d\), then \(a : c = b : d\) | 92
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Art.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Componendo</td>
<td>92</td>
</tr>
<tr>
<td>12. Dividendo</td>
<td>93</td>
</tr>
<tr>
<td>13. Componendo and Dividendo</td>
<td>93</td>
</tr>
<tr>
<td>14. An Important Theorem</td>
<td>97</td>
</tr>
<tr>
<td>15. Miscellaneous Examples</td>
<td>98</td>
</tr>
</tbody>
</table>

CHAPTER V.

VARIATION.

1. Definition | 104 |
2. If A varies as B, then the numerical measure of any value of A and that of the corresponding value of B are in a constant ratio | 105 |
3. Definitions | 105 |
4. An Important Theorem | 106 |
5. Some results worth remembering | 107 |
6. Examples | 108 |

CHAPTER VI.

QUADRATIC EQUATIONS.

1. Definition | 116 |
2. Solution of a pure quadratic | 117 |
3. Solution of an affected quadratic | 119 |
4. The general expression for the roots of a quadratic | 122 |
5. Sreedharacharyya's method of solving a quadratic | 124 |
6. Solution of a quadratic by the method of resolution into factors | 124 |

CHAPTER VII.

METHODS OF SOLUTION OF SOME IMPORTANT CLASSES OF EQUATIONS REDUCIBLE TO QUADRATICS.

1. Equations reducible to the form \(px^2 + qx = r \) | 127 |
2. Equations in which the expression equated to zero is capable of being resolved into factors | 128 |
TABLE OF CONTENTS.

Art.
3. Equations reducible to the form $z^2 + pz = q$... 131
4. An Important Artifice 136
5. Reciprocal Equations 137
Miscellaneous Equations 140

CHAPTER VIII.

THEORY OF QUADRATIC EQUATIONS AND QUADRATIC EXPRESSIONS.
1. A quadratic equation cannot have more than two roots 143
2. Nature of the roots of a Quadratic 144
3. Applications of the results proved in Art. 2 ... 147
4. Relations between the roots and the co-efficients ... 153
5. Applications of the preceding results ... 154
6. Distinction between a Quadratic expression and a Quadratic equation 161
7. Some important theorems and examples ... 163

CHAPTER IX.

SIMULTANEOUS EQUATIONS INVOLVING QUADRATICS.
1. Simple cases 170
2. Homogeneous Equations 176
3. Equations symmetrical with respect to x and y ... 179
4. The method of cross-multiplication 183
5. Miscellaneous Artifices 186

CHAPTER X.

EQUATIONAL PROBLEMS 205

CHAPTER XI.

IMAGINARY QUANTITIES.
1. Definition and Conventions 216
2. Powers of i 217
TABLE OF CONTENTS.

Art. Page.
3. If $a + bi = 0$, then $a = 0$ and $b = 0$... 217
4. If $a + bi = c + di$, then $a = c$ and $b = d$... 217
5. Conjugate imaginary expressions 217
6. Definition 218
7. To find the square root of $a + bi$ 219
8. The cube roots of unity 219
9. A few miscellaneous examples 221

CHAPTER XII.

ARITHMETICAL PROGRESSION.

1. Definition 223
2. To find the sum of a number of terms in Arithmetical Progression 224
3. Applications of the formulae of the preceding article 226
4. Arithmetic means 228
5. To insert a given number of Arithmetic means between two given quantities 229
6. The natural numbers 230
7. Miscellaneous Examples 234

CHAPTER XIII.

GEOMETRICAL PROGRESSION.

1. Definition 240
2. To find the sum of a number of terms in Geometrical Progression 240
3. If n be an integer and r a given proper fraction, to prove that r^n diminishes as n increases ... 242
4. Geometrical series continued to infinity ... 242
5. Recurring decimals 244
6. Geometric means 245
7. Miscellaneous Examples 246
Table of Contents

Chapter XIV.

Harmonic Progression.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Definition</td>
<td>251</td>
</tr>
<tr>
<td>2. Harmonic means</td>
<td>252</td>
</tr>
<tr>
<td>3. Relation between the Arithmetic, Geometric and Harmonic means between two real positive quantities</td>
<td>254</td>
</tr>
<tr>
<td>Miscellaneous Examples</td>
<td>255</td>
</tr>
</tbody>
</table>

Chapter XV.

Permutations and Combinations.

1. Definitions	259
2. Simple cases of permutations explained and illustrated	259
3. Permutations of \(n \) different things taken \(r \) at a time	263
4. Combinations of \(n \) different things taken \(r \) at a time	268
5. The number of combinations of \(n \) things taken \(r \) at a time is equal to the number of combinations of \(n \) things taken \(n - r \) at a time	269
6. To find the number of combinations of \(n \) things taken \(r \) at a time without assuming the formula for the number of permutations	278
7. To find for what value of \(r \) \(^nC_r \) is greatest	279
8. To find the number of permutations of \(n \) things taken all together when the things are not all different	281
9. To find the number of permutations of \(n \) things taken \(r \) at a time when each may occur once, twice, thrice, &c., up to \(r \) times in any permutation	288
10. To find the number of combinations of \(n \) things taken \(r \) at a time when each may occur once, twice, thrice, &c., up to \(r \) times in any combination	290
11. Miscellaneous Examples	292
CHAPTER XVI.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>310</td>
</tr>
</tbody>
</table>

CHAPTER XVII.

BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT.

1. To prove that \((1 + x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \ldots + \binom{n}{n}x^n\), where \(n\) is any positive integer. ... 313

2. To find an expression for the general term in the expansion of \((x + a)^n\) ... 317

3. In the expansion of \((1 + x)^n\) the co-efficients of terms equidistant from the beginning and end are equal ... 321

4. To find the greatest co-efficient in the expansion of \((1 + x)^n\) ... 321

5. To find the greatest term in the expansion of \((x + a)^n\) ... 321

6. To find the sum of the co-efficients of the terms in the expansion of \((1 + x)^n\) ... 324

7. To prove that in the expansion of \((1 + x)^n\), the sum of the co-efficients of the odd terms is equal to the sum of the co-efficients of the even terms ... 324

8. Miscellaneous Examples ... 325

CHAPTER XVIII.

BINOMIAL THEOREM. ANY EXPONENT.

1. To prove the Binomial Theorem for any exponent ... 331

2. The expansion of \((1 + x)^n\) by the Binomial Theorem is not always arithmetically intelligible ... 338

3. To find the numerically greatest term in the expansion of \((1 + x)^n\), for any rational value of \(n\) ... 339

4. A few important applications of the Binomial Theorem ... 340

5. Miscellaneous Examples ... 344
TABLE OF CONTENTS.

CHAPTER XIX.

LOGARITHMS.

Art. Page.
1. Definition 352
2. General Propositions 353
3. Illustrations of the principles explained in art. 2 ... 354
4. Characteristic; Mantissa 355
5. Advantages of the common system of Logarithms 356
6. Given the logarithms of all numbers to a certain base a, to find the logarithm of any number to a new base b 359

CHAPTER XX.

EXPONENTIAL THEOREM AND LOGARITHMIC SERIES.

1. To expand a^x in ascending powers of x ... 361
2. To prove that e is incommensurable ... 362
3. Miscellaneous Examples 363
4. To expand $\log_e (1 + x)$ in ascending powers of x 368

CHAPTER XXI.

IDENTITIES, ELIMINATION AND MISCELLANEOUS ARTIFICES.

1. The method of Indeterminate multipliers for solving simultaneous simple equations involving three unknown quantities 373
2. If any algebraical expression $p_0 x^n + p_1 x^{n-1} + p_2 x^{n-2} + p_3 x^{n-3} + \&c. + p_{n-1} x + p_n$, where n is a positive integer, be divided by $x - a$, the remainder will be $p_0 a^n + p_1 a^{n-1} + p_2 a^{n-2} + p_3 a^{n-3} + \ldots + p_{n-1} a + p_n$ 376
3. If any algebraical expression $p_0 x^n + p_1 x^{n-1} + p_2 x^{n-2} + p_3 x^{n-3} + \ldots + p_{n-1} x + p_n$, where n is a positive integer, vanish when x is equal to each of the n quantities a_1, a_2, a_3, a_4, $\ldots a_n$, then will $p_0 x^n + p_1 x^{n-1} + p_2 x^{n-2} + \ldots + p_{n-1} x + p_n = p_0 (x - a_1)(x - a_2)(x - a_3)\ldots\ldots (x - a_n)$ 377
<table>
<thead>
<tr>
<th>Art.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. If an algebraical expression of the form (p_0 x^n + p_1 x^{n-1} + p_2 x^{n-2} + p_3 x^{n-3} + \ldots + p_{n-1} x + p_n), where (n) is a positive integer, vanish for more than (n) different values of (x), then each of the coefficients (p_0, p_1, p_2, p_3, \ldots, p_{n-1}, p_n) must be zero</td>
<td>378</td>
</tr>
<tr>
<td>5. If two rational and integral expressions of the (n)th degree in (x) be equal to one another for all values of (x), then will the coefficient of any power of (x) in one expression be equal to the coefficient of the same power of (x) in the other expression</td>
<td>379</td>
</tr>
<tr>
<td>6. A short method of finding the quotient and remainder when any rational integral expression in (x) is divided by (x - a)</td>
<td>381</td>
</tr>
<tr>
<td>7. Symmetrical and alternating functions</td>
<td>384</td>
</tr>
<tr>
<td>8. Identities</td>
<td>384</td>
</tr>
<tr>
<td>9. Elimination</td>
<td>395</td>
</tr>
<tr>
<td>10. Miscellaneous Artifices</td>
<td>406</td>
</tr>
<tr>
<td>Miscellaneous Exercises</td>
<td>419</td>
</tr>
<tr>
<td>Answers</td>
<td>431</td>
</tr>
<tr>
<td>Calcutta University F. A. Papers</td>
<td></td>
</tr>
<tr>
<td>Madras University F. A. Papers</td>
<td></td>
</tr>
<tr>
<td>Bombay University P. E. Papers</td>
<td>460</td>
</tr>
<tr>
<td>Punjab University I. E. Papers</td>
<td></td>
</tr>
<tr>
<td>Allahabad University I. E. Papers</td>
<td></td>
</tr>
<tr>
<td>Answers to University Papers</td>
<td>502—510</td>
</tr>
<tr>
<td>Appendix (containing Graphs)</td>
<td>511—570</td>
</tr>
</tbody>
</table>