দেখাও যে:

1. \((-a) \times 6b = -6ab\).
2. \((4a) \times (-2b) = -8ab\).
3. \(-7x^7 \times 8x^8 = -56x^{15}\).
4. \((-2b) \times (-10a) = 20ab\).
5. \((-7c) \times (-3ab) = 21abc\).
6. \(10 \times 35 = 25 \times 14\).
7. \(15 \times 75 = 5^3 \times 3^2\).
8. \((-a)^3 = -a^3\).
9. \((-ab)^3 = -a^3b^3\).
10. \((a^2b^2)^3 = a^{12}b^6\).
11. \((-a^3b^5)^2 = a^6b^{10}\).
12. \((-x)^5 = -x^5\).
13. \((-4x^2y^4)^2 = 16x^4y^8\).

গুণ কর:

14. \(2x^2y \text{ কে } -3x^5y^4 \text{ ধারা।}
15. \(-7a^2b^3c \text{ কে } -3abc \text{ ধারা।}
16. \(-5x^{12}y^3 \text{ কে } -8x^5y^{13} \text{ ধারা।}
17. \(-12x^3y^3z^2 \text{ কে } 13x^7y^6z^4 \text{ ধারা।}
18. \(-14xy^5z^8 \text{ কে } -10x^5y^2z^{12} \text{ ধারা।}

সরল কর:

19. \((-x)^3 \times (-2xy^2)^2 \times (x^2y)^3\).
20. \((-2a^2)^2 \times (7a^4b^7) \times (5a^9b^5)\).
21. \((-6x^5y^2z) \times (2x^4x^3y^5) \times (-4y^3z^2x^8)\).
22. \(-3x^2y) \times (4xy^2x) \times (-x^3z^5y^4) \times (2xyz)\).

- 46. পুর্ববর্তী নিয়মে প্রদর্শিত পদ্ধতি অনুসারেই সরলরৈখিকতম গুণফল নির্ণয় করা যায়; অনেকাংশ জটিল গুণনের সময় এই প্রকার প্রক্রিয়া সাধারণতঃ মৌলিকই সম্পর্ক করিতে হয়। শিক্ষার্থীরা ব্যাখ্যা জানাতে এইরূপ গুণনের তালিকা অভ্যস্ত হইতে পারে, সেইজন্য নিয়ে একটি প্রশ্নসূচী দেওয়া হইল।

উদ্দীপনা,

1. \(3x^2 \text{ এবং } -5xy \text{ এর গুণফল লিখ।}
 \((3x^2) \times (-5xy) = -15x^3y\).

2. \(-5a^2b \text{ এবং } -8ab^2 \text{ এর গুণফল লিখ।}
 \((-5a^2b) \times (-8ab^2) = 40a^3b^3\).

বী—৮
প্রশ্নমালা 16

নিয়মলিখিতের গুরুত্বপূর্ণ লিখ:

1. \(-2x^3\) এবং \(5x^4\).
2. \(5a^3b\) এবং \(-4ab^5\).
3. \(-3m^2n^5\) এবং \(-7n^3m^5\).
4. \(3x^3y^5\) এবং \(-6xy^2\).
5. \(-a^3b^2\) এবং \(-3a^4b^8\).
6. \(5mn^6\) এবং \(-8m^7n\).
7. \(-10xyz^2\) এবং \(-5xy^2z\).
8. \(4x^3y^3z\) এবং \(-6xyz^3\).
9. \(-6x^2y^3z^4\) এবং \(-8x^3y^2z^3\).
10. \(-5a^3b^5c^7\) এবং \(-5a^2b^4c^6\).
11. \(3x^2y^4z\) এবং \(-8xy^2z\).
12. \(-4abxy\) এবং \(-8a^2bxy^2\).
13. \(-7a^2b^2z^3\) এবং \(-5abz\).
14. \(5a^4x^2y\) এবং \(-12x^5y^4a^2\).
15. \(-14xy^4\) এবং \(-5x^4yz\).
16. \(2abc^5\) এবং \(-9a^7b^5c\).
17. \(-7a^3x^5y\) এবং \(-9a^3y^3a^6\).
18. \(-3x^6y^2z^5\) এবং \(-20y^5z^2x^8\).
19. \(-13a^8b^1c^15\) এবং \(-5bc^5a^2\).
20. \(-7a^7x^8y^6z^2\) এবং \(-16z^5x^2a^6y^3\).

47. প্রমাণ করিতে হইবে যে, \(a(b+c) = ab + ac\).

\(b\) ও \(c\) যে কোন রাশি হউক না কেন, \(a\) একটি অন্যতম ধনরাশি হইলে,

\[a(b+c) = (b+c) + (b+c) + (b+c) + \cdots \text{\(a\)-সংখ্যক পদ পর্যন্ত} \]
\[= (b+b+b+\cdots \text{\(a\)-সংখ্যক পদ পর্যন্ত}) \]
\[+(c+c+c+\cdots \text{\(a\)-সংখ্যক পদ পর্যন্ত}) \]
\[= ab + ac. \] \hspace{1cm} (1) \]

অতএব, বিপরীতভাবে, \(\frac{ab+ac}{a} = b+c = \frac{ab}{a} + \frac{ac}{a}\); অর্থাৎ, \(p\) ও \(q\) যে\nকোন রাশিই হউক না কেন, \(r\) একটি অন্যতম ধনরাশি হইলে,

\[\frac{p+q}{r} = \frac{p}{r} + \frac{q}{r}. \] \hspace{1cm} (A) \]

এখন মনে কর, \(a\) একটি ধনাত্মক ভগাক্ষ (positive fraction), অর্থাৎ
\[a = \frac{m}{n}; \text{ কিন্তু, } m, n \text{ উভয়ই অন্যতম ধনরাশি} \].

তাহা হইলে,
\[\frac{m}{n} (b+c) = m \times \frac{b+c}{n} \]
\[= \frac{m(b+c)}{n} = \frac{mb+mc}{n} = \frac{mb}{n} + \frac{mc}{n} = \frac{m}{n} b + \frac{m}{n} c. \] \hspace{1cm} (2) \]

* * *

প্রত্যেক বিপরীতবিশেষ হইলে \(b+c\) রূপে দেখা যাইতে পারে। দৃষ্টান্তগত \(2x^3\) কে \(b\) এবং\n\((-3y^3)\) কে \(c\) ধরিলে, \(2x^3-3y^3\) কে অর্থাৎ \((2x^3)+(-3y^3)\) কে অবশ্যই \(b+c\) যেখানে করা যায়।
সাধারণ চারি নিয়ম

অতএব, (1) ও (2) হইতে দেখা যায় যে, \(a \) যে কোন ধনাত্মক হইলে,
\[
a(b + c) = ab + ac.
\]
(3)

তারপর মনে কর, \(a \) একটি ঋণাত্মক এবং \(-x\) এর সমন্বয়ে, \(a \) অবশ্যই একটি ধনাত্মক হইলে,
\[
(-x).(b + c) = -\left[(x(b + c))\right]
\]
\[
= -(xb + xc)
\]
\[
= -ab - xc
\]
\[
= (-x)b + (-x)c;
\]
অতএব দেখা যায় যে, \(a \) যে কোন একটি ঋণাত্মক হইলে,
\[
a(b + c) = ab + ac.
\]
(4)

স্থতরাং (3) ও (4) হইতে দেখা যায় যে, \(a \) যে কোন রাশিই হউক না কেন,
\[
a(b + c) = ab + ac.
\]

অনুসরণ 1.
বিপরীতক্রমে,
\[
ab + ac = a(b + c);
\]
তত্ত্বাবধানে,
\[
xya^2 + xyb^2 = xy(a^2 + b^2).
\]

অনুসরণ 2.
যেহেতু, \(b - c = b + (-c) \),
অতঃপর,
\[
a(b - c) = a[b + (-c)]
\]
\[
= ab + a(-c) = ab - ac.
\]
বিপরীতক্রমে,
\[
ab - ac = a(b - c).
\]
তত্ত্বাবধানে,
\[
2ax - 2ay = 2a(x - y).
\]

অনুসরণ 3.
\[
a(b + c + d) = a\{b + (c + d)} = ab + a(c + d) = ab + ac + ad;
\]
তত্ত্বাবধানে,
\[
a(b + c + d + e + f + \ldots) = ab + ac + ad + ae + af + \ldots.
\]
অতএব, কোন বহুপদ রাশি (multinomial) কে একটি সরলরাশি (monomial) দ্বারা গুণকরিতে হইলে বহুপদরাশির প্রত্যেক পদকে সরলরাশিটি দ্বারাগুণ করিয়া তার গুণফলগুলিকে যোগ করিতে হয়।

বিপরীতক্রমে,
\[
ab + ac + ad + ae + \ldots = a(b + c + d + e + \ldots).
\]

উদাই 1.
\[
2ab - 3b^2 \text{ কে } 5ab \text{ দ্বারা গুণ করে হয়}.
\]
\[
5ab(2ab - 3b^2) = 5ab\{2ab + (-3b^2)}
\]
\[
= 5ab \times 2ab + 5ab \times (-3b^2)
\]
\[
= 10a^2b^2 - 15ab^3.
\]
উদাহরণ 2. \(x^4 - 3x^3 + 5x^2 - 6x + 4 \) কে \(-6x^2\) দ্বারা ভাগ কর।
\[
\begin{align*}
(-6x^2)(x^4 - 3x^3 + 5x^2 - 6x + 4) \\
= (-6x^2)\{x^4 + (-3x^3) + 5x^2 + (-6x) + 4\} \\
= (-6x^2).x^4 + (-6x^2)(-3x^3) + (-6x^2).5x^2 \\
\quad + (-6x^2)(-6x) + (-6x^2).4 \\
= -6x^6 + 18x^5 - 30x^4 + 36x^3 - 24x^2.
\end{align*}
\]

উদাহরণ 3. \(-4a^4 + 5a^3b - 6a^2b^2 - 8ab^3 + 9b^4\) কে \(-3a^2b^2\) দ্বারা ভাগ কর।
\[
\begin{align*}
-4a^4 + 5a^3b - 6a^2b^2 - 8ab^3 + 9b^4 \\
-3a^2b^2 \\
\frac{12a^6b^2 - 15a^5b^3 + 18a^4b^4 + 24a^3b^5 - 27a^2b^6}{12a^6b^2 - 15a^5b^3 + 18a^4b^4 + 24a^3b^5 - 27a^2b^6}
\end{align*}
\]

উদাহরণ 4. সরল করঃ \(2x^2(3x - 2) + 2x(2x + 3) - 6(x - 3)\).
এখন, \(2x^2(3x - 2) = 6x^3 - 4x^2\),
\(2x(2x + 3) = 4x^2 + 6x\),
\(6(x - 3) = 6x - 18\).

স্তরাং, প্রান্ত রাশি
\[
= (5x^3 - 4x^2) + (4x^2 + 6x) - (6x - 18)
\]
\[
= 6x^3 - 4x^2 + 4x^2 + 6x - 6x + 18 = 6x^3 + 18.
\]

উদাহরণ 5. সরল করঃ \(3a(2a - 5) - 3a(a - 6)\).
\(2a - 5\) এর পরিবর্তে \(x\) এবং \(a - 6\) এর পরিবর্তে \(y\) লিখিলে,
\[
3a(2a - 5) - 3a(a - 6) = 3ax - 3ay = 3a(x - y)
\]
\[
= 3a\{(2a - 5) - (a - 6)\}
\]
\[
= 3a(a + 1) = 3a^2 + 3a.
\]

প্রশ্নালা 17

১. \(2x - y\) কে \(-x\) দ্বারা।

২. \(a - 2b + 3c\) কে \(-5a\) দ্বারা।

৩. \(2x + 3y\) কে \(4xy\) দ্বারা।

৪. \(2a^2 - 3b^2 - c^2\) কে \((a + c)\) দ্বারা।
সাধারণ চারি নিয়ম

5. \[x^2y - 2xy^2 - y^3 \] কে \(-3xy \) ধারা।
6. \[3a^2b^2 - ab^2 - 5a^3 + a^2b \] কে \(7b^2 \) ধারা।
7. \[3a^2x - 4ax^2 + 5ax \] কে \(-2a^2 \) ধারা।
8. \[-2m^3 + 3m^2n - 5mn^2 \] কে \(4mn \) ধারা।
9. \[a^2bc - b^2ca + c^2ab \] কে \(-abc \) ধারা।
10. \[x^2 + y^2 + z^2 - yz - zx - xy \] কে \(xyz \) ধারা।
11. \[-2c^2d + 3d^3c - 5cd^2 - 4c^2d^2 \] কে \(-6c^3d^4 \) ধারা।
12. \[8a^4 - 6a^3b + 5a^2b^2 - 4ab^3 \] কে \(-2a^3b^3 \) ধারা।

সরল করঃ

13. \[7x^3(x - 2) - 2x^2(x - 3) - 8x^2(1 - 2x) \]
14. \[x^2(y^2 - z^2) + y^2(z^2 - x^2) + z^2(x^2 - y^2) \]
15. \[9x^3(x^3 - 2y^2) + 5y^2(3x^3 + y^2) + 3y^2(x^3 - 10y^2) \]
16. \[x^3(x^2 + 2x^2 + 2x) - 2a^2(x^3 + 2x^2 + 2x) + 2a^2(3x^3 + 2x^2 + 2x) \]
17. \[a^6b^3(a^6b^3 - 2a^4b^2 + 2a^2b) + 2a^2b(a^6b^3 - 2a^4b^2 + 2a^2b) \]
18. \[2a^9b^6(2a^9b^6 + 6a^6b^4 + 9a^3b^2) - 6a^6b^4(2a^9b^6 + 6a^6b^4 + 9a^3b^2) + 9a^3b^2(2a^9b^6 + 6a^6b^4 + 9a^3b^2) \]
19. \[a^2(2x - 3y) + a^2(3x + 4y) - a^2(5x - 2y) \]
20. \[\text{যদি } a = x^2 - yz, b = y^2 - zx \text{ এবং } c = z^2 - xy \text{ হয়, তবে} \]
 (i) \[ax + by + cz \]
 (ii) \[cx + ay + bz \]
 এর মান নির্ণয় কর।

4. ভাগ (Division)

সংজ্ঞা: যে কোন তিনটি রাশি \(a, b \) এবং \(c \) যদি এইরূপভাবে পরম্পর সংজ্ঞা হয় যে, \(a = b \times c \), তাহা হইলে, \(a \) রাশিটি \(b \) রাশিটি ধারা বিভাজ্য (divisible) এইরূপ বুলা হয়; অথবা সংক্ষেপে, \(a = b \times c \) হইলে, \(a + b = c \), বলা হয়।

এইরূপ, \(x = y \times z \), \(x \times y = z \), এবং \(x \times z = y \).

যে রাশিটিকে ভাগ করা হয়, তাহাকে ভাজ্য (dividend), যে রাশিটি ধারা ভাগ করা হয়, তাহাকে ভাজক (divisor) এবং ভাগ করার ফলে যে রাশিটি পাওয়া যায়, তাহাকে ভাগফল (quotient) বলে।

চীনা: \(a \) কে \(b \) ধারা ভাগ করিলে যে ভাগফল পাওয়া যায়, তাহাকে নাগারণ্ড: \(a \) ধারা প্রকাশ করা হয়।
49. স্যুল প্রাক্তিকতা (Fundamental propositions):

(1) প্রমাণ করিয়ে হইবে যে, \(a + b \times b = a \).

যদি \(a + b \) দ্বারা সৃচিত হয়, তাহা হইলে সংজ্ঞায়সারে,
\[x \times b = a. \]
অতএব,
\[a + b \times b = x \times b = a. \]

(2) প্রমাণ করিয়ে হইবে যে, \(a + b + c = a \times b \times c. \)

\[
(a + b + c) \times bc = [(a + b) + c] \times c \times b
\]
\[
= [(a + b + c) \times c] \times b,
\]
\[= (a + b) \times b = a. \]

অতএব, সংজ্ঞায়সারে, \(a + b + c = a \times b \times c \).

অর্থাৎ, কোন একটি রাশিকে অপর দুইটি রাশিদ্বারা পর পর ভাগ করা, এবং পূর্বোক্ত রাশিটিকে শেষোক্ত রাশিদ্বারের গুণফল দ্বারা ভাগ করা একই কথা।

অনুসূচি।। প্রথম \(a + b + c = a + c + b \); কারণ, প্রত্যেকেই \(a + bc \) এর সমান।

(3) প্রমাণ করিয়ে হইবে যে, \(a + b = a \times \frac{1}{b} \).

এখন,
\[\frac{1}{b} \times b = 1 + b \times b = 1; \]
অতএব,
\[a \div \frac{1}{b} \times b = a \times \left(\frac{1}{b} \times b \right) = a \times 1 = a; \]
অর্থাৎ,
\[\left(a \times \frac{1}{b} \right) \times b = a. \]

স্যুল, সংজ্ঞায়সারে, \(a + b = a \times \frac{1}{b} \).

কাজেই, কোন একটি রাশিকে অপর একটি রাশিদ্বারা ভাগ করা, অথবা পূর্বোক্ত রাশিটিকে শেষোক্ত রাশিদ্বারের অন্তর্গত (reciprocal) দ্বারা গুণ করা, উভয়ই এক।

[দুইটি রাশির গুণফল 1 হইলে, উহাদের একটিকে অপরটিকের অন্তর্গত (reciprocal) বলে।]

অনুসূচি।। \(a + b \times c = a \times c + b; \)
কারণ, \(a + b \times c = a \times \frac{1}{b} \times c = a \times c \times \frac{1}{b} = a \times c + b. \)
সাধারণ চারিনিয়ম

50. ভাগে চিহ্নসংক্রান্ত নিয়ম:
বেঞ্চি

\[a \times (-b) = -ab, \]

স্তরান্ত, সংক্রান্তারে,

\[(-nb) + a = -b \]

এবং

\[(-ab) + (-b) = a \]

... ... (I)

আবার, বেঞ্চি

\[(-a) \times (-b) = ab, \]

স্তরান্ত,

\[ab + (-a) = -b \]

এবং

\[ab + (-b) = -a \]

... ... (II)

আবার, ইহাও সংপ্লাষ্ঠের

\[ab + a = b \]

এবং

\[ab + b = a \]

... ... (III)

অতএব (I), (II) ও (III) হইতে ভাগের চিহ্নসংক্রান্ত নিয়ম পাওয়া যায়; যথা, ভাজ্জ ও ভাঙ্ককের সূচালিত হইলে, ভাঙ্গল ধনকল, এবং অসূচালিত হইলে, ভাঙ্গলা ধাতিত হইবে; অর্থাৎ সূচালিত ধাতায়ক এবং অসূচালিত খনায়ক

ভাঙ্গল উৎপন্ন করে।

51. একটি সরলরাশিকে অপর একটি সরলরাশি দ্বারা ভাঙগোঁ
করেক্ট বিশেষ ক্ষেত্র সম্বন্ধে আলোচনা করা যাইতেছে:

(1) বেঞ্চি

\[3a^2b \times 5a^3b^2c = 15a^5b^3c, \]

অতএব,

\[(15a^5b^3c) + (5a^3b^2c) = 3a^2b. \]

কাজেই, ভাজ্জ = \[15a^5b^3c \]

\[= 3 \times 5 \times a^3 \times a^2 \times b^2 \times b \times c, \]

এবং ভাঙ্কক = \[5a^3b^2c \] হইলে, ভাঙ্গল = \[3a^2b. \]

(2) বেঞ্চি

\[(-2a^{10}b^2cd) \times (-3a^5c^2) = 6a^{15}b^2c^3d, \]

অতএব,

\[(6a^{15}b^2c^3d) + (-2a^{10}b^2cd) = -3a^5c^2. \]

কাজেই, ভাজ্জ = \[6a^{15}b^2c^3d \]

\[= 2 \times 3 \times a^{10} \times a^5 \times b^2 \times c \times c \times c \times d; \]

এবং ভাঙ্কক = \[-2a^{10}b^2cd \] হইলে, ভাঙ্গল = \[-3a^5c^2. \]

(3) বেঞ্চি

\[(-5a^8b^5c^2d) \times (4b^3c^4) = -20a^8e^8d, \]

অতএব,

\[(-20a^8b^5c^2d) + (-5a^8b^5c^2d) = 4b^3c^4. \]

সমজ বীজগণিত

কলেজ, তাজ্জু = \(-20a^8b^8c^6d\)
= \((-5) \times 4 \times a^8 \times b^5 \times b^3 \times c^2 \times c^4 \times d\),
= \(-5a^8b^5c^2d\) হইলে, তাগফল = \(4b^3c^4\).

(I), (II) এবং (III) হইতে, একটি সরলরাশিকে অপর একটি সরলরাশি দ্বারা
ভাগ করিবার, নিম্নলিখিত নিয়ম পাওয়া যায়:

যে সকল উৎপাদক দ্বারা ভাজক উৎপন্ন হইয়াছে, ভাজা হইতে সেই সকল
উৎপাদক অপসারণ করিয়া উত্তার অর্থিষ্ঠ উৎপাদকগুলির সহিত, ভাজা ও ভাজকের
সমূহসমূহ হইলে, ধন্তিক এবং অসদৃশিক হইলে, আকারটি যুক্ত করিলেই 'ভাগফল পাওয়া
যায়।

এখন \(a^{12} + a^7 = (a^5 \times a^7) + a^7 = a^5[= a^{12} - 7]\).
তাজ্জু, \(a^{20} + a^9 = a^{11} ; a^{21} + a^{14} = a^7 ; ইত্যাদি।

অতএব, সাধারণভাবে, \(m \) ও \(n \) দুইটি অখণ্ড ধনরাশি এবং \(m > n \) হইলে,
\(a^m + a^n = a^{m-n}.

উদাহরণ 1. \(18m^3n^2p\) কে \(-6m^2n^2p\) দ্বারা ভাগ কর।
তাজ্জু = \(18m^3n^2p\)
= \(6 \times 3 \times m^2 \times m \times n^2 \times p\).
তাজ্জুক = \(-6m^2n^2p\).
তাগफল = \(-3m\).

উদাহরণ 2. \(-24a^7b^3c\) কে \(-6a^4bc\) দ্বারা ভাগ কর।
তাজ্জু = \(-24a^7b^3c\)
= \((-6) \times 4 \times a^4 \times a^3 \times b \times b^2 \times c\).
তাজ্জুক = \(-6a^4bc\).
তাগফল = \(4a^3b^2\).

প্রশ্নমালা 18

ভাগ কর:
1. \(16x^4\) কে \(-4x\) দ্বারা।
2. \(-18x^4\) কে \(6x^2\) দ্বারা।
3. \(-20a^7b^5\) কে \(-5a^3x^2\) দ্বারা।
4. \(36x^4y^0\) কে \(12x^5y^4\) দ্বারা।
5. \(-14a^4b^3c\) কে \(-7a^2bc\) দ্বারা।
6. \(-20p^{12}q^8r^2\) কে \(10p^0q^0n^2\) দ্বারা।
সাধারণ চারি নিয়ম

52. একটি বহুপদিকের একটি সরলরৈখিক দ্বারা

ভাগ:

৪৭ নিয়মের তৃতীয় অনুসিদ্ধান্ত হইতে দেখা যায় যে,

\[a(b + c + d + e + f + \cdots) = ab + ac + ad + ae + af + \cdots \cdots \]

অতএব,

\[(ab + ac + ad + ae + af + \cdots) + a \]

\[= b + c + d + e + f + \cdots \]

\[= (ab + a) + (ac + a) + (ad + a) + (ae + a) + (af + a) + \cdots \]

সুতরাং, একটি বহুপদিকের একটি সরলরৈখিক দ্বারা ভাগ করিতে হইলে, ভাজের

প্রত্যেকটি পদকে ভাজক দ্বারা ভাগ করিয়া, পরে ভাগফলগুলির সমষ্টি লইলেই নির্ণয়ের

পূর্ণ ভাগফল পাওয়া যাইবে।

উদা. ১. \[4a^3x^2 - 6a^2x^3 + 10ax^4 \] \[\text{কে} - 2ax \text{ দ্বারা ভাগ কর।} \]

নির্ণয়ের ভাগফল = \[\frac{4a^3x^2 - 6a^2x^3 + 10ax^4}{-2ax} \]

\[= \frac{4a^3x^2}{-2ax} - \frac{-6a^2x^3}{-2ax} + \frac{10ax^4}{-2ax} \]

\[= -2a^2x + 3ax^2 - 5x^2. \]

উদা. ২. \[9x^5 - 4x^4a - 2x^3a^2 \] \[\text{কে} 3x^2 \text{ দ্বারা ভাগ কর।} \]

নির্ণয়ের ভাগফল = \[\frac{9x^5 - 4x^4a - 2x^3a^2}{3x^3} \]

\[= \frac{9x^5}{3x^3} + \frac{-4x^4a}{3x^3} + \frac{-2x^3a^2}{3x^3} \]

\[= 3x^2 - \frac{4}{3}xa - \frac{2}{3}a^2. \]
সহজ বীজগণিত

টিকা। 'কিছু অভ্যস্ত ইহলে মধ্যবর্তী প্রক্রিয়াগুলি না দেখাইয়া একেবারীং
ভাগফল লিখিয়া দেওয়া যায়।

প্রশ্নমালা 19

ভাগ কর:

1. \(3a^3b^2 - 2a^2b^3\) এক এল. ধারা।
2. \(2a^3b^5 - 3ab^3\) কে \(-ab\) ধারা।
3. \(6a^4b^2 - 9a^2b^4\) কে \(3a^2b^2\) ধারা।
4. \(12x^4y^2 - 9x^5y\) কে \(-3x^3y\) ধারা।
5. \(14x^7y^5 - 21x^5y^7\) কে \(-7x^5y^5\) ধারা।
6. \(4mn^3 - 12m^2n^2 + 16m^3n\) কে \(4mn\) ধারা।
7. \(-3a^3x^4 + 6a^2x^5 - 9a^4x^3\) কে \(-3a^2x^3\) ধারা।
8. \(12x^5 - 8x^3a^2 + 20ax^4\) কে \(-4x^3\) ধারা।
9. \(10mn^5 - 15m^7n^2 - 20m^3n^6\) কে \(5m^3n^2\) ধারা।
10. \(8p^3q^2 - 5p^3q^3 - 3p^2q^4\) কে \(-5p^2q^2\) ধারা।
11. \(-14x^8y^5 + 21x^10y^3 - 28x^7y^6\) কে \(7x^7y^3\) ধারা।
12. \(15a^4x^4 - 30a^7x^5 - 45a^6x^6\) কে \(20a^4x^5\) ধারা।
13. \(-60x^4a^5 - 75x^3a^6 + 80x^5a^4\) কে \(-20x^3a^4\) ধারা।
14. \(125m^6n^4p^2 - 175m^4n^6p^2 - 200m^2n^2p^8\) কে \(25m^3n^2p^2\) ধারা।
15. \(-a^2b^4c^4x^4y^4z^2 + 2a^4b^2c^4x^2y^2z^2 - 3a^4b^4c^2x^2y^2z^2\) কে
 \(-a^2b^2c^2x^2y^2z^2\) ধারা।

বিবিধ প্রশ্নমালা 1

1. কোন সংখ্যা 5 ঘণ্টা সময় বুথাইবে, (i) যদি সময়ের একক অর্ধকটা হয়;
 (ii) যদি সময়ের একক দশ ঘণ্টা হয়?
2. \(x = 17\) এবং \(y = 25\) হলে, \(x \sim y\) কত বুথাইবে?
3. 'সহগ' এর সংজ্ঞা লিখ। সাংক্রান্ত এবং উন্নতি 'সহগ' এর পার্থক্য
 দেখাও। \(15x^3, 2qx^3, 7ab^2x^3\) এবং \(16m^2pq^3\) এর মধ্যে কোন কোনটি \(x^3\) এর
 'সহগ'?
বিবিধ প্রশ্নমালা

$4(i)$ \sqrt{ab} এবং $\sqrt[4]{ab}$ এর পার্থক্য কি?

$4(ii)$ $a=9, b=4$ হলে, \sqrt{ab} এবং $\sqrt[4]{ab}$ এর মান নির্ণয় কর।

5. যদি কোন স্থানের উত্তরের অর্থ মাইল দূরত্ব 40 ঘাঁটা প্রকাশ করা হয়, তবে ঐ স্থানের দক্ষিণে 11 ঘাঁটা দূরত্ব কত ঘাঁটা প্রকাশ করবে?

6. একটি ঋণার্থীকে একটি ধনার্থীর সহিত যোগ করিলে কি ফল হয় লিখ।
ইহা হইতে প্রমাণ কর যে, $+(-b)=-b$.

7. ‘বিয়োগ’ এর সংজ্ঞা লিখ। ইহা হইতে প্রমাণ কর যে,
$4 - 6 = -2$ এবং $5 - (-3) = 8$.

8. নিম্নলিখিত সংখ্যাগুলিকে উহাদের মানের অংকগুলোর (in descending order) লিখ: $2, 5, -3, 7, -8, -1, 9, -4, -12$.

II

1. $a=4, b=5$ হইলে, নিম্নলিখিত রাশিগুলির মান নির্ণয় কর:
(i) $ab - a \times b$; (ii) $45 - ab$; (iii) $74 - 7a$; (iv) $85 - 8b$.

2. a^n দ্বারা কি বুঝায়? a^n এবং n^a এর প্রেরণ কি?

3. $a = 7, b = 5$ হইলে, $a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$ এর মান কত?

4. a' এর সহিত নিম্নলিখিত রাশিগুলির সম্পর্ক কি?

$\sqrt[3]{a}, \sqrt[5]{a}, \sqrt[8]{a}$ এবং $\sqrt[2]{a}$

5. $a = 8, b = 7, c = 6, d = 5$ এবং $e = 1$ হলে,
$\sqrt{a^2 - 3d \times \sqrt[3]{b^3 - c^3 - 2e}}$ এর মান কত?

6. একটি ধনার্থী বা ঋণার্থীর পরমাণুর অর্থ কি? একটি দৃষ্টান্ত দাও।

7. যোগ কর: $3x^2y, -8x^2y, -19x^2y$ এবং $17x^2y$
$x = 4$ এবং $y = 5$ হইলে, উভয় যোগফলের সাংখ্যিক কত?

8. $16x^4, -8xy^3, 24x^2y^2, y^4$ এবং $-32x^3y$ এর যোগফল লিখ;
$x = 4, y = 5$ হইলে, উভয় যোগফলের সাংখ্যিক কত?

9. $17b - 12c - 19a$ হইতে $4a - 13b - 25c$ বিয়োগ কর।

10. সূচন কর: $3x - [4y + (2x - (x - 5y + 3z))] - (3x - 7z)$
সৃষ্ট বীজগনিত

III

1. নিম্নলিখিত বৃত্তপদী বীজগণিতীয় প্রতীক সাহায্যে প্রক্ষেপ করঃ

 (1) \(a\) ও \(b\) এর সমষ্টিতে \(c\) দ্বারা গুণ করিয়ে যে গুণফল পাওয়া যায় তাহা,
 \(x\) কে \(y\) ও \(z\) এর গুণফল দ্বারা ভাগ করিয়া যে ভাগফল পাওয়া যায়,
 তাহার সমান।

 (2) \(x\) ও \(y\) এর সমষ্টির বর্গ, \(x\) ও \(y\) এর বর্গগুলি এবং \(x\) ও \(y\) এর গুণফলের
 দ্বিগুণ,—এতদুভয়ের সমষ্টির সমান।

 (3) \(m\) হইতে \(n\) এর বিয়োগফলের ঘনমূলকে \(m\) ও \(n\) এর গুণফলের ঘন দ্বারা
 ভাগ করা হইলে, \(x\) তাগফল \(x\) ও \(y\) এর গুণমূলকের সমষ্টি হইতে মূলী।

 (4) যেহেতু \(b\) হইতে \(a\) বড়, অতএব \(b\) এর তিনগুণ হইতে \(a\) এর তিনগুণ বড়।

2. \(A, B, C, D, E, F, G\) বিন্দুগুলি একটি সরলরেখার উপর একাধিকারের অবস্থিত যে, \(AB, BC, CD, DE, EF, FG\) দুরত্বগুলি যথাক্রমে \(3, 4, 6, 8, 5\) এবং
 \(7\) ইকে। \(DC\) কে 3 যারা হড়িত করিয়ে, \(DB, DE, DF, DA, DG\) এর প্রতিয়েকের
 তে দ্বারা হড়িত হইবে?

3. এক ঋণার্থকে এক ঋণার্থের সহিত যোগ করিয়ে, গুণফল কি হইবে
 বল। \(a=6\) এবং \(b=4\) হইলে, \(-a^3, -3a^2b, -3ab^2, -b^3\) এর সমষ্টির মান
 নির্ণয় কর।

4. কতকগুলি নিম্নলিখিত অংশ লুপ্তা দেখাও যে, উহাদের গুণফল অংশগুলির ক্রম-
 পরিবর্তনের উপর নির্ভর করে না (অর্থাৎ ক্রমপরিবর্তন দ্বারা গুণফলের কোন পরিবর্তন
 হয় না)।

5. \(a=16, b=10, c=5, d=1\) হইলে, \((a-b)(5\sqrt{a-b}) + \sqrt{(a-b)(c+d)}\)
 এর মান নির্ণয় কর।

6. \(a=\frac{1}{3}, b=\frac{1}{6}\) হইলে, প্রমাণ কর যে,

 \[
 \frac{a^5 + b^5}{a+b} = a^4 - a^3b + a^2b^2 - ab^3 + b^4.
 \]

7. যোগ করঃ \(3a^2 + 4bc - x^2 + 10, 2x^2 - 5a^2 - 15 + 6bc\) এবং
 \(21 - 9bc - 4a^2 - 10x^2.

8. সরণীফলঃ \(a - (5b - 4a - (3e - 3b) + 2e - (a - 2b - e)).\)
বিবিধ এক্ষেত্র

IV

1. $a = 9$ হইলে,

 (1) $\sqrt{49} - \sqrt{4a}$ এবং (2) $\sqrt{49} - \sqrt{4a}$ এর মান নির্ণয় কর।

2. কতকগুলি নির্দিষ্ট অঙ্ক লইয়া দেখাও যে, রাশিসমূহের যোগফল নির্ণয় করিতে হইলে, উহাদিগকে বিভিন্ন বিভাগে (groupএ) ভাগ করিয়া নির্ণয়ের যোগফল ঐ বিভাগ- গুলির সমষ্টিরূপে একাক করা যায়।

3. $a = 2, b = 3$ এবং $c = 4$

 $\frac{a-b+c}{a+b-c} + \frac{b-c+a}{b+c-a} + \frac{c-a+b}{c+a-b}$ এর মান নির্ণয় কর।

4. 'বীজগণিতীয় রাশিমালা'র সংজ্ঞা লিখ। সরলরাশি ও মিলিনরাশির মধ্যে পার্থক্য কি?

 $42abx^2$ একটি মিশ্র, না সরল রাশি? দৃষ্টান্ত সহ বিভিন্নরূপ মিলিনরাশিমালার নাম বল।

5. $x = 2, y = 3, a = 6, b = 5$ হইলে,

 $\frac{3\sqrt{b(x+y)^2} + 3\sqrt{(x+a)(b-2x)} + 3\sqrt{b(x-y)^2}}{3\sqrt{(x+y)^2}}$ এর মান নির্ণয় কর।

6. কিরূপ পরিমাণ অর্থ A, B ও C এর ভিতর একান্তভাবে ভাগ করিয়া দেওয়া হইল যে, B, A হইতে a পাউড়ে বেশী এবং C, B হইতে b পাউড়ে বেশী পাইল; $A x$ পাউড়ে পাইয়া থাকিলে, সম্পূর্ণ অধীনের পরিমাণ নির্ণয় কর।

7. নেগে কর।

 $a^2 - 3ab - \frac{1}{3}b^2, 2b^2 - \frac{1}{3}b^3 + c^2, ab - \frac{1}{3}b^2 + b^3$ এবং $2ab - \frac{1}{3}b^3$.

8. সরল কর:

 $\{2x^2 - (y^2 - xy)\} - \{y^2 - (4x^2 - y^2)\} + \{2y^2 - (3xy - x^2)\}$.

V

1. গুণফলের 'মাজা' এবং 'মান' কাহাকে বলে? 'সমান্তর রাশিমালা' কাহাকে বলে? একটি ষষ্ঠমানবিষ্টি ও একটি সম্পূর্ণমানবিষ্টি ত্রিপদ (trinomial) সমান্তর রাশিমালা লিখ।

2. $a \times b - c + d \times e + f + gh$ এর মান নির্ণয় করিতে হইলে, কিরূপে আরোপ করিতে হয়?

3. উৎপাদক (factor) এর সংজ্ঞা লিখ। $2ab(a + b)$ এর সরল উৎপাদকগুলি কি?
সহজ বীজগণিত

4. $a = 4$ এবং $x = 2$ হলে,

$$
\frac{2ax^2}{(a - x)^2} - \frac{6\sqrt{ax}}{a^3 \sqrt{2a + 4x}} - \frac{29x^2}{64a}
$$
এর মান নির্ণয় কর।

5. $x = 5$ হলে,

$$(x^3 - 7x^2 + 6x + 5) + (-3x^2 + 2x^3 + 4 + 5x^2) + (-11 - 4x^3 + 2x - 7x^2) + (9x^2 + 2 + 5x^2 - 4x)$$
এর মান নির্ণয় কর।

6. প্রমাণ কর যে, $a - (b - c) = a - b + c$. যেখানে a, b, c হয় এবং b, c হয় বড় এবং a, b হয় এবং প্রত্যেকে ধনাত্মক হলে, উপরের যুক্তি ক্রমে সাধারণভাবে প্রমাণ করা যায়?

7. সরল করঃ $2x - [(3x - 9y) - (2x - 3y) - (x + 5y)]$.

8. কখনো একটি সংখ্যার অপর একটি সংখ্যায় অন্তর হলে বলা হয়? সংখ্যাসূচকে, -4 ও -4 এর অন্তর নির্ণয় কর।

VI

1. সংখ্যার 'শক্তি' ও উত্তর 'শক্তি' এর সংখ্যা লিখ; এবং ২টি দৃষ্টিতে দ্বারা উৎপন্নকে বুঝাইয়া দাও।

2. $a = 16, b = 10, x = 5, y = 1$ হলে,

$$
(a - y) \sqrt{24bx + x^2} + \sqrt{(a - x)(b + y)}
$$
এর মান নির্ণয় কর।

3. দেখাও যে,

$$
a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc),
$$

(1) যখন $a = 3, b = 4, c = 5$;

(2) যখন $a = \frac{4}{3}, b = \frac{5}{6}, c = \frac{7}{8}$.

4. যে নিয়মের সাহায্যে নিম্নলিখিত নিম্নলিখিত সিদ্ধান্তে উপনীত হওয়া যায়, ছোট নিয়মটি লিখঃ $a - b + c - d + e - f = (a + c + e) + (-b - d - f)$.

5. $40 - (-15) = 55$, এইটিকে দ্বিতীয় দ্বারা প্রতিপন্ন কর।

6. $x = 17, y = 16, z = 15$ হলে, নিম্নলিখিত রাশিমালাসমূহের সমাধানের মান নির্ণয় করঃ $7x^3 - 25 \sqrt{yz + 24}$, $19x + 3 - 3z^4 - 12z^3$ এবং $2x^4 + 5x^3 + 7 \sqrt{yz}$.

7. নিম্নলিখিত রাশিগুলো উপনীত প্রতিক্রিয়াগুলি বর্ণনা করঃ

$$
5a - [4b - [3c - (2d - 7e)]].
$$

8. $a = 4, b = 3, c = 2, d = 1$ হলে,

$$
[(a^3 + b^3 + c^3) + 3(a + b - (c - a)) + a^2b + c^2d] \times \{a^2 - (b^2 + c^2) + d^2\}
$$
এর মান নির্ণয় কর।
VII

1. নিম্নলিখিত রাশি দুইটির মধ্যে পার্থক্য নির্দেশ করঃ
 (1) \(a + bc \) এবং \(a + b \times c \); (2) \(a^4 \) এবং \(4a \); (3) \(3\sqrt{a} \) এবং \(\sqrt[3]{a} \);
 (4) \(\sqrt{a + b} \) এবং \(\sqrt{a + b} \); (5) \(\sqrt{ab} \) এবং \(\sqrt{ab} \).

2. \(a = 1, b = 2, c = 3, d = 0 \) হলে, নিম্নলিখিত রাশিগুলির মান নির্ণয় করঃ
 (1) \(\frac{a^2b + b^2c + c^2d + d^2a}{(a + b)(c + d) - \{(a - d) + (c - b)\}} \);
 (2) \(\sqrt[3]{b - a^3 + \frac{1}{4}(c-a)} - \sqrt[3]{3(8a + 5b + 3c - 2d)} \).

3. \(a + b + c \), \(a^3 + b^3 + c^3 \), \((a + b)^3 + (b + c)^3 + (c + a)^3 + 6abc \) এবং \(2a^3 + 3b^2(a + c) + 2b^3 + 3c^2(a + b) + 2c^3 + 3a^2(b + c) + 6abc \) পরস্পরের সমান,
 (1) যখন \(a = 2, b = 3, c = 4 \); (2) যখন \(a = 7, b = 4, c = 1 \).

4. সরল করঃ
 (1) \(1 - [1 - (1 - (\sqrt{a + x}))] \);
 (2) \(3a - (b - 2c) - (a + c - (3a - b - 2c)) - (2a - 3b + 4c) \).

5. নিম্নলিখিত বর্ণালীগুলি বীজগণিতীয় প্রতীক সাহায্যে প্রকাশ করঃ
 (1) দুইটি সংখ্যার সমষ্টি ও উভয়ের অন্তরের গুণফল, সংখ্যা দুইটির বর্গফলের অন্তরকের সমান।
 (2) দুইটি সংখ্যার সমষ্টি বর্গ, সংখ্যা দুইটির বর্গমুক্ত সমষ্টি হইতে উভয়ের গুণফলের দ্বিগুণ পরিমিত প্রভাব বর্তমান।

6. \(a = 39, b = 52 \) হলে, \(17a - 5b - [7a - 3b - 4(a - b) - (2a + 3b)] \) এর মান নির্ণয় কর।

7. \(V = 5a + 4b - 6c, \ X = -3a - 9b + 7c, \ Y = 20a + 7b - 5c, \) এবং \(Z = 13a - 5b + 9c \) হয়, তাহা হলে,
 \(V - (X + Y) + Z \) এর মান কত?
 [মাধ্যান্ত্রিক সমীকরণ, 1883.]

8. \(a - \frac{1}{3}b + \frac{1}{3}c - \frac{1}{3}d, - \frac{1}{3}c + \frac{1}{3}a - \frac{1}{3}b + d, \frac{1}{3}d - \frac{1}{3}b + c - a, \frac{1}{3}a - \frac{1}{3}b + \frac{1}{3}c - \frac{1}{3}d \) বিয়োগ কর।

VIII

1. \(a \) ও \(b \) দুইটি অক্ষু ধনাত্মক হইলে, প্রমাণ কর যে, \(a \times b = b \times a \).

2. \(M = a(m + n) \) এবং \(N = b(m + n) \) হইলে, \(\frac{M}{a} + \frac{N}{b} \) এবং \(\frac{M}{a} - \frac{N}{b} \) এর প্রভাবের মান নির্ণয় কর।
৩. \((a+b) = ca + cb\) এই অভেদ-(identity)টিতে,

 (1) \(c\) এর পরিবর্তে \(m+n\) বসাও, এবং ইহা হইতে \((m+n)(a+b)\) এর
 মান নির্ণয় কর।

 (2) \(c\) এর পরিবর্তে \(a+b\) বসাও, এবং ইহা হইতে \((a+b)^2\) এর মান
 নির্ণয় কর।

৪. সরল করঃ (1) \(x(y-z) + y(z-x) + z(x-y)\);

 (2) \(\frac{y-z}{yz} + \frac{z-x}{zx} + \frac{x-y}{xy}\).

৫. প্রমাণ কর যে,

 (1) \(m\) ও \(n\) চুইটি অথবা ধনাত্মক, এবং \(m > n\), হইলে, \(a^m + a^n = a^m - n\); এবং

 (2) \(a + b + c = a + c + b = a + bc\).

৬. \(a = 3xy - yz - zx, b = 3yz - zx - xy\) এবং \(c = 3zx - xy - yz\) হইলে,
\(\frac{a+b+c}{xyz}\) এর মান নির্ণয় কর।

৭. \(\frac{3}{2}a^{5}b^{10}c^{15}x^{3}y^{6}z^{4} + \frac{1}{2}a^{10}b^{15}c^{5}x^{6}y^{4}z^{2} + \frac{1}{2}a^{15}b^{5}c^{10}x^{4}y^{2}\) কে
 \(24a^{3}b^{5}c^{7}x^{2}y^{4}z^{6}\) দ্বারা গণনা কর।

৮. \(\frac{3}{3}a^{10}b^{15}c^{20}x^{12}y^{10}z^{8} + \frac{1}{4}a^{15}b^{20}c^{10}x^{10}y^{8}z^{12}\)
 + \(\frac{1}{4}a^{20}b^{10}c^{15}x^{8}y^{12}z^{10}\) কে \(\frac{3}{4}a^{10}b^{10}c^{10}x^{8}y^{8}z^{8}\) দ্বারা ভাগ কর।

চতুর্থ অধ্যায়

সরল সূত্রাবলী ও তাহাদের অরোগ

(Simple Formulae and their applications)

৫৩. সংজ্ঞা: বীজগণিতীয় প্রতীকের (algebraical symbols) সাহায্যে সাধারণতঃ একাধিক কোন সমীকরণকে বীজগণিতীয় সূত্র (algebraical formula)
বা সংক্ষেপে, উপ-সূত্র (formula) বলা হয়। সূত্রের সাহায্যে সংখ্যা ব্যবহার কর যে,
সিদ্ধান্ত অত্যন্ত সাহায্যপূর্ণতামাত্রে প্রাপ্ত করা যায়।
54. সূত্র : \((a+b)^2 = a^2 + 2ab + b^2\).

\[
(a+b)^2 = (a+b)(a+b) \\
= a(a+b) + b(a+b) \\
= a^2 + 2ab + b^2.
\]

স্তরসাং, দুইটি রাশির সমষ্টির র্গ, রাশি দুইটির বর্গমুখের, এবং উভয়ের সূত্রভের লম্বা, সমষ্টির সূত্র।

অনুসরণ : \(a^2 + b^2 = (a^2 + 2ab + b^2) - 2ab\)

\[= (a+b)^2 - 2ab.\]

উদাঃ 1. \(2x + 3y\) এর বর্গ নির্ণয় কর।

\[(2x + 3y)^2 = (2x)^2 + 2(2x)(3y) + (3y)^2 \]
\[= 4x^2 + 12xy + 9y^2.\]

উদাঃ 2. \((5x + 4)\) এর বর্গ নির্ণয় কর।

\[(5x + 4)^2 = (5x)^2 + 2(5x)(4) + 4^2 \]
\[= 25x^2 + 40x + 16.\]

উদাঃ 3. \(4a^3 + 7b^4\) এর বর্গ নির্ণয় কর।

\[(4a^3 + 7b^4)^2 = (4a^3)^2 + 2(4a^3)(7b^4) + (7b^4)^2 \]
\[= 16a^6 + 56a^3b^4 + 49b^8.\]

উদাঃ 4. \(a + b + c\) এর বর্গ নির্ণয় কর।

\[(a + b + c)^2 = [a + (b+c)]^2 \]
\[= a^2 + 2a(b+c) + (b+c)^2 \]
\[= a^2 + 2ab + 2ac + b^2 + 2bc + c^2 \]
\[= a^2 + b^2 + c^2 + 2ab + 2ac + 2bc.\]

উদাঃ 5. \(a + b + c + d\) এর বর্গ নির্ণয় কর।

\[(a + b + c + d)^2 = [(a + b) + (c + d)]^2 \]
\[= (a + b)^2 + 2(a + b)(c + d) + (c + d)^2 \]
\[= (a^2 + 2ab + b^2) + 2(ac + ad + bc + bd) + (c^2 + 2cd + d^2) \]
\[= a^2 + b^2 + c^2 + d^2 + 2ab + 2ac + 2ad + 2bc + 2cd + 2cd.\]

সী ৫
. 6. সরল কর:

\[(a + b - c)^2 + 2(a + b - c)(a - b + c) + (a - b + c)^2\]

\[a + b - c \text{ এর পরিবর্তে } x \text{ এবং } a - b + c \text{ এর পরিবর্তে } y \text{ ধরিলে,}\]

প্রাদত্ত রাশিমালা = \[x^2 + 2xy + y^2\]

= \[(x + y)^2\]

= \([(a + b - c) + (a - b + c)]^2\]

= \[(2a)^2 = 4a^2.\]

. 7. \[x = 15, y = -9 \text{ হলে, } 9x^2 + 30xy + 25y^2 \text{ এর মান নির্ণয় কর।}\]

প্রাদত্ত রাশিমালা = \[(3x)^2 + 2(3x)(5y) + (5y)^2\]

= \[(3x + 5y)^2,\]

কিন্তু \[3x + 5y = 3 \times 15 + 5 \times (-9) = 45 - 45 = 0.\]

.প্রাদত্ত রাশিমালা = 0.

প্রশ্নমালা 20

লিখিত রাশিগুলির বর্গ নির্ণয় কর:

1. \[x + 4.\]
2. \[3a + 2.\]
3. \[x + 2y.\]
4. \[2x + 7y.\]
5. \[3a + 4b.\]
6. \[5a + 7b.\]
7. \[ay + 3bx.\]
8. \[a^2 + 2bc.\]
9. \[3x^2 + 2y^2.\]
10. \[4x^2 + y^3.\]
11. \[a + 2b + 3c.\]
12. \[ab + bc + ca.\]
13. \[2p + 3q + 4r.\]
14. \[x^2 + y^2 + z^2.\]
15. \[2x + 3y + 4z.\]
16. \[x^2 + y^3 + z^4.\]
17. \[x + y + 2a + 3b.\]
18. \[3a + 4b + c + 2d.\]
19. \[2a + x + 4y + 3z.\]
20. \[4m + 3n + 3p + 2q.\]

সরল কর:

21. \[(x + y)^2 + 2(x + y)(x - y) + (x - y)^2.\]
22. \[(x - y + z)^2 + (y + z - x)^2 + 2(x - y + z)(y + z - x).\]
23. \[(2a - 3b + 4c)^2 + (2a + 3b + 4c)^2 + 2(2a - 3b + 4c)(2a + 3b - 4c).\]
24. \[(5a - 7b)^2 + 2(5a - 7b)(9b - 4a) + (9b - 4a)^2.\]
25. \[(2x - 5y - 3z)^2 + (6y + 5z - x)^2 + 2(2x - 5y - 3z)(6y + 3z - x).\]

মান নির্ণয় কর:

26. \[9x^2 + 12x + 4, যখন x = -1.\]
27. \[16x^2 + 64x + 64, যখন x = -2.\]
28. \(25m^2 + 40mn + 16n^2\), যখন \(m = -1\) এবং \(n = 23\).
29. \(49a^2 + 56ab + 16b^2\), যখন \(a = -7\) এবং \(b = 13\).
30. \(64a^2 + 16ac + c^2\), যখন \(a = 6\) এবং \(c = -49\).
31. \(81x^2 + 18xz + z^2\), যখন \(x = 7\) এবং \(z = -67\).
32. \(36p^2 + 132pq + 121q^2\), যখন \(p = 12\) এবং \(q = -7\).
33. \(m + \frac{1}{m} = 4\) হলে, দেখো যে, \(m^2 + \left(\frac{1}{m}\right)^2 = 14\).

55. সূত্রঃ \((a-b)^2 = a^2 - 2ab + b^2\).

\[\begin{align*}
(a-b)^2 &= (a-b)(a-b) \\
&= a(a-b) - b(a-b) \\
&= a^2 - 2ab + b^2.
\end{align*}\]

অর্থাৎ, দুইটি রাশির অন্তরফলের বর্গ নিঃস্ব করিতে হইলে, উহাদের বর্গফলের সমষ্টি হইতে রাশি দুইটির গুণফলের দ্বিগুণ বিয়োগ করিতে হয়।

টিকা। এই সূত্রটি পূর্বের হস্তের অন্তর্ভুক্ত সূত্রগুলিও আরো সহজ সমাধান করা যেতে পারে।

\((a-b)^2 = \{a + (-b)\}^2 = a^2 + 2a(-b) + (-b)^2 = a^2 - 2ab + b^2\).

অনুসারি 1. \(a^2 + b^2 = (a^2 - 2ab + b^2) + 2ab = (a-b)^2 + 2ab\).

অনুসারি 2. যেহেতঃ \((a+b)^2 = a^2 + 2ab + b^2 \ldots \ldots (1)\)

এবং \((a-b)^2 = a^2 - 2ab + b^2 \ldots \ldots (2)\)

অতএব, \((a+b)^2 = (a-b)^2 + 4ab\); এবং \((a-b)^2 = (a+b)^2 - 4ab\).

আবার, (1) এর সাহিত (2) যোগ করিয়া,

\((a+b)^2 + (a-b)^2 = 2(a^2 + b^2)\); এবং (1) হইতে (2) বিয়োগ করিয়া,

\((a+b)^2 - (a-b)^2 = 4ab\).

উদ্দ. 1. \(3a - 4b\) এর বর্গ নিঃস্ব কর।

\[
(3a - 4b)^2 = (3a)^2 - 2(3a)(4b) + (4b)^2 \\
= 9a^2 - 24ab + 16b^2.
\]

উদ্দ. 2. \(x - y - z\) এর বর্গ নিঃস্ব কর।

\[
(x - y - z)^2 = \{x - (y + z)\}^2 \\
= x^2 - 2x(y + z) + (y + z)^2.
\]
সহজ বীজগণিত

\[x^2 - 2xy - 2xz + y^2 + 2yz + z^2 = x^2 + y^2 + z^2 - 2xy - 2xz + 2yz. \]

উদ্ধ. 3. \(2x - 3y - 4z \) এর বর্গ নির্ণয় কর।

\[
(2x - 3y - 4z)^2 = [2x - (3y + 4z)]^2 \\
= (2x)^2 - 2(2x)(3y + 4z) + (3y + 4z)^2 \\
= 4x^2 - 2(6xy + 8xz) + (9y^2 + 24yz + 16z^2) \\
= 4x^2 - 12xy - 16xz + 9y^2 + 24yz + 16z^2 \\
= 4x^2 + 9y^2 + 16z^2 - 12xy - 16xz + 24yz.
\]

উদ্ধ. 4. \(a - b + c + d \) এর বর্গ নির্ণয় কর।

\[
(a-b-c+d)^2 = [(a-b) - (c-d)]^2 \\
= (a-b)^2 - 2(a-b)(c-d) + (c-d)^2 \\
= (a^2 - 2ab + b^2) - 2(ac - ad - bc + bd) + (c^2 - 2cd + d^2) \\
= a^2 - 2ab + b^2 - 2ac + 2ad + 2bc - 2bd + c^2 - 2cd + d^2 \\
= a^2 + b^2 + c^2 + d^2 - 2ab - 2ac + 2ad + 2bc - 2bd - 2cd.
\]

উদ্ধ. 5. সরল করঃ

\[
(ax - by + cz)^2 + (ax - by - cz)^2 = 2(ax - by + cz)(ax - by - cz).
\]

\[ax - by + cz \] এর পরিবর্তে \(m \) এবং \(ax - by - cz \) এর পরিবর্তে \(n \) ধরিয়া,

• প্রথম রাশি \(= m^2 + n^2 - 2mn = (m - n)^2 \)

\[= [(ax - by + cz) - (ax - by - cz)]^2 \\
= (2cz)^2 = 4c^2 z^2. \]

উদ্ধ. 6. \(a = 15 \) এবং \(b = 6 \) হলে, \(9a^2 - 48ab + 64b^2 \) এর মান নির্ণয় করঃ

• প্রথম রাশি \(= (3a)^2 - 2(3a)(8b) + (8b)^2 \)

\[= (3a - 8b)^2 \]

\[= (45 - 48)^2 = (-3)^2 = 9. \]

. প্রশ্নালিখ

নিম্নলিখিত রাশিপুলির বর্গ নির্ণয় করঃ

1. \(x - 3. \)
2. \(2x - 5. \)
3. \(3x - 5. \)
4. \(4x - 5y. \)
5. \(8m - 3n. \)
6. \(3m - 5n. \)

. প্রশ্নালিখ

নিম্নলিখিত রাশিপুলির বর্গ নির্ণয় করঃ

1. \(x - 3. \)
2. \(2x - 5. \)
3. \(3x - 5. \)
4. \(4x - 5y. \)
5. \(8m - 3n. \)
6. \(3m - 5n. \)
সরল সহজবলী ও তাহাদের প্রয়োগ

7. \(p^2 - mn \)
8. \(x^2y - xy^2 \)
9. \(x^3 - 2xz \)
10. \(3a^3 - 5b^3 \)
11. \(-xyz - abc \)
12. \(x^2yz - y^2zx \)
13. \(a^2x^4 - b^2y^4 \)
14. \(a - 2b - 2c \)
15. \(2x - 3y - 4z \)
16. \(3m - 4n - 5q \)
17. \(a^2 - 3b^2 - 5c^2 \)
18. \(x - y - a - b \)
19. \(a - 2x - 3b - 4y \)
20. \(90 - 1 \)
21. \(120 - 3 \)
22. \(500 - 2 \)
23. \(1000 - 7 \)

সরল কর:

24. \((a + 3b)^2 - 2(a + 3b)(a - 3b) + (a - 3b)^2 \)
25. \((2a - 4b + 5c)^2 + (2a + 4b + 5c)^2 - 2(2a - 4b + 5c)(2a + 4b + 5c) \)
26. \((3a + 5b + 7c)^2 + (7c - 4a + 5b)^2 - 2(3a + 5b + 7c)(7c - 4a + 5b) \)
27. \((2x^2 - y^2 - 5zx^2)^2 - 2(2x^2 - y^2 - 5zx^2)(6x^2 + 2x^2 - y^2) \)
28. \((ab - bc + ca)^2 + (ab + 4bc + 2ca)^2 - 2(ab - bc + ca)(ab + 4bc + 2ca) \)

মান নির্ণয় কর:

29. \(a^2b^2 - 12abc + 36c^2 \), যখন \(a = 4, b = 7 \) এবং \(c = 5 \)
30. \(x^2y^2 - 24xyz + 144z^2 \), যখন \(x = 7, y = 9 \) এবং \(z = 6 \)
31. \(25(x + y)^2 + z^2 - 10z(x + y) \), যখন \(x = 47, y = 22 \) এবং \(z = 129 \)
32. \(9c^2 - 42c(a - b) + 49(a + b)^2 \), যখন \(a = -37, b = 57 \) এবং \(c = 45 \)
33. \(64(7p - 5q)^2 - 96(7p - 5q)r + 36r^2 \), যখন \(p = 28, q = 32 \) এবং \(r = 46 \)
34. \(c - \frac{1}{c} = 4 \) হলে, দেখাও যে, \(c^2 + \left(\frac{1}{c} \right)^2 = 18 \)

56. সূত্র: \((a + b)(a - b) = a^2 - b^2 \)

\[
[(a + b)(a - b) = a(a - b) + b(a - b) \\
= a^2 - ab + ba - b^2 = a^2 - b^2]
\]

অর্থাং, দুইটি রাশির সমষ্টি ও বিযোগফলের গুণফল, রাশি দুইটির বর্গফলের বিযোগফলের সমূহ ন।

টিকা। বিপরীতভাবে প্রকাশ করিলে, \(a^2 - b^2 = (a + b)(a - b) \)। পুনরায়, \(a^2 - b^2 \) এর অনুক্রম প্রকাশ করা যায় যে কোন রাশিকে, রাশিযুক্তির সমষ্টি ও বিযোগফল—এই দুইটি উৎপাদককে বিশেষণ করা যায়।
[কোন একটি রাশি, অন্য দুই বা তত্ত্বাধিক রাশির গুণফলের সমান হইলে, শেষোক্ত রাশিসমূহের প্রত্যেকটিকে পূর্বাঞ্চল রাশির উৎপাদক বা গুণনীয়ক (factor) বলে।]

উদাহরণ ১. $3x + 5y$ কে $3x - 5y$ দ্বারা গুণ কর।

$$(3x + 5y)(3x - 5y) = (3x)^2 - (5y)^2$$
$$= 9x^2 - 25y^2.$$

উদাহরণ ২. $a + b - c$ কে $a - b + c$ দ্বারা গুণ কর।

$$(a + b - c)(a - b + c) = (a + (b - c))(a - (b - c))$$
$$= a^2 - (b - c)^2$$
$$= a^2 - (b^2 - 2bc + c^2)$$
$$= a^2 - b^2 + 2bc - c^2.$$

উদাহরণ ৩. $x^2 + xy + y^2$ কে $x^2 - xy + y^2$ দ্বারা গুণ কর।

$$(x^2 + xy + y^2)(x^2 - xy + y^2) = [(x^2 + y^2) + xy][(x^2 + y^2) - xy]$$
$$= (x^2 + y^2)^2 - (xy)^2$$
$$= x^4 + 2x^2y^2 + y^4 - x^2y^2$$
$$= x^4 + x^2y^2 + y^4.$$

উদাহরণ ৪. সরল করঃ $(a^2 + ab + b^2)^2 - (a^2 - ab + b^2)^2$।

প্রদত্ত রাশি $= [(a^2 + ab + b^2) - (a^2 - ab + b^2)] \times [(a^2 + ab + b^2) - (a^2 - ab + b^2)]$

$= (2a^2 + 2b^2) \times 2ab$

$= 2(a^2 + b^2) \times 2ab = 4ab(a^2 + b^2).$

উদাহরণ ৫. $(9726854)^2 - (9726849)^2$ এর মান নির্ণয় কর।

প্রদত্ত রাশি $= (9726854 + 9726849)(9726854 - 9726849)$

$= 19453703 \times 5 = 97268515.$

উদাহরণ ৬. $(a + b)^2 - (c - d)^2$ কে উৎপাদকে বিল্পন কর।

প্রদত্ত রাশি $= [(a + b) + (c - d)][(a + b) - (c - d)]$

$= (a + b + c - d)(a + b - c + d).$

উদাহরণ ৭. $16x^4 - 81x^6$ কে উৎপাদকে বিল্পন কর।

প্রদত্ত রাশি $= (4a^2)^2 - (9x^2)^2$

$= (4a^2 + 9x^2)(4a^2 - 9x^2).$
সরল হতাক্ষরী ও তাহাদের প্রয়োগ

অন্তঃ, \[4a^2 - 9x^2 = (2a)^2 - (3x)^2 = (2a + 3x)(2a - 3x). \]
অতএব, \[\text{প্রত্যক্ষ রাশি} = (4a^2 + 9x^2)(2a + 3x)(2a - 3x). \]

প্রশ্নমালা 22

গুণ কর:
1. \[x + 3 \text{ এবং } x - 3. \]
2. \[5x + 13 \text{ এবং } 5x - 13. \]
3. \[x + 2a \text{ এবং } x - 2a. \]
4. \[ax + by \text{ এবং } ax - by. \]
5. \[am + n^2 \text{ এবং } am - n^2. \]
6. \[xy + yz \text{ এবং } xy - yz. \]
7. \[x^2 - 2yz \text{ এবং } x^2 + 2yz. \]
8. \[x^2y + xy^2 \text{ এবং } xy^2 - x^2y. \]
9. \[x + 1, x - 1 \text{ এবং } x^2 + 1. \]
10. \[a^2 + b^2, a^2 - b^2 \text{ এবং } a^4 + b^4. \]
11. \[a + b + c \text{ এবং } a + b - c. \]
12. \[a + b + c \text{ এবং } a - b - c. \]
13. \[m^2 + mn + n^2 \text{ এবং } m^2 - mn + n^2. \]
14. \[x^2 + 2xy + 2y^2 \text{ এবং } x^2 - 2xy + 2y^2. \]
15. \[ax - by + cz \text{ এবং } ax + by - cz. \]
16. \[-ax + by + cz \text{ এবং } ax + by + cz. \]
17. \[b^2m - c^2n + a^2p \text{ এবং } b^2m + c^2n - a^2p. \]
18. \[a^3 - 8b^3 + 27c^3 \text{ এবং } a^3 + 8b^3 - 27c^3. \]
19. \[a^2x^2 - 2ax + 2 \text{ এবং } a^2x^2 + 2ax + 2. \]
20. \[a^4x^4 - a^2x^2 + 1 \text{ এবং } a^4x^4 + a^2x^2 + 1. \]
21. \[m^2 + \sqrt{2}mn + n^2 \text{ এবং } m^2 - \sqrt{2}mn + n^2. \]
22. \[x^2 - \sqrt{2}x + 1, x^2 + \sqrt{2}x + 1 \text{ এবং } x^4 - 1. \]

সরল কর:
23. \[(a + b - c)^2 - (a - b + c)^2. \]
24. \[(a - 2b + 3c)^2 - (a + 2b - 3c)^2. \]
25. \[(x^2 + xy + y^2)^2 - (x^2 - xy + y^2)^2. \]
26. \[(x + y - a + b)^2 - (x - y + a - b)^2. \]
27. \[(2a + 3b - 5c + 7d)^2 - (2a - 3b + 5c - 7d)^2. \]

মান নির্ধারণ কর:
28. \[2345 \times 2345 - 2348 \times 2343. \]
29. \[(53497)^2 - (53487)^2. \]
30. \[498567 \times 498567 - 498563 \times 498563. \]

উপাদানের বিক্রিয়া কর:
31. \[25x^2 - 36. \]
32. \[9a^2 - 16c^2. \]
33. \[16m^2 - 49n^2. \]
34. $4x^2 - 81q^2$.
35. $a^2x^2 - 64b^2$.
36. $36x^4 - 121y^4$.
37. $A9 - 64d^2$.
38. $144c^2 - 25d^2$.
39. $(a + b)^2 - c^2$.
40. $(a + 2b)^2 - 25c^2$.
41. $4x^2 - (3a - 4b)^2$.
42. $a^2 - (2b - 3c)^2$.
43. $a^4 - 81b^4$.
44. $(x - y)^2 - (a - b)^2$.
45. $81x^4 - 625y^4$.
46. $(4a + 7b)^2 - (3a - 8b)^2$.
47. $(x + y)^2 - (2x - 7y)^2$.
48. $(a + 2b - 3c)^2 - (a + b - c)^2$.
49. $(2m + 3n - 5p)^2 - (2n + 3p)^2$.
50. $(3x - 4y + 7z)^2 - (2x - 3y + 5z)^2$.

57. সূত্র : $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$;
অথবা $a^3 + b^3 + 3ab(a + b)$.

$$[(a + b)^3 = (a + b)(a + b)^2$$
$$=(a + b)(a^2 + 2ab + b^2)$$
$$=a(a^2 + 2ab + b^2) + b(a^2 + 2ab + b^2)$$
$$=a^3 + 2a^2b + 3ab^2 + b^3$$

আবার, এই শেষোক্ত রাশি $= a^3 + 3ab(a + b) + b^3$

$$= a^3 + b^3 + 3ab(a + b).$$

অনুসরণ্ড. $a^3 + b^3 = \{a^3 + b^3 + 3ab(a + b)\} - 3ab(a + b)$
$$= (a + b)^3 - 3ab(a + b).$$

উদাহ. 1. $3a + 5b$ এর ঘন (cube) নির্ণয় কর।

$$\begin{align*}
(3a + 5b)^3 &= (3a)^3 + 3(3a)^2(5b) + 3(3a)(5b)^2 + (5b)^3 \\
&= 27a^3 + 9a^2(5b) + 3(3a)(25b^2) + 125b^3 \\
&= 27a^3 + 135a^2b + 225ab^2 + 125b^3.
\end{align*}$$

উদাহ. 2. সরল কর :

$$(x - y)^3 + (x + y)^3 + 3(x - y)(x + y)^2(x + y) + 3(x + y)^2(x - y).$$

[কলিত: প্রবেশিকা, 1876.]

‘$x - y$’ এর পরিবর্তে a এবং ‘$x + y$’ এর পরিবর্তে b লিখিলে,

প্রস্তাব রাশি $= a^3 + b^3 + 3a^2b + 3b^2a$
$$= a^3 + 3a^2b + 3ab^2 + b^3$$
$$=(a + b)^3 = \{(x - y) + (x + y)\}^3$$
$$= (2x)^3 = 8x^3.$$
उदाहरण 3. \(a + b = 5 \) एवं \(ab = 6 \) हैले, \(a^3 + b^3 \) एर मान निर्णय कर।

eँगार, \(a^3 + b^3 = (a + b)^3 - 3ab(a + b) \)
\[= 5^3 - 3 \times 6 \times 5 = 125 - 90 = 35.\]

उदाहरण 4. \(x + \frac{1}{x} = p \) हैले, देखाओ वे, \(x^3 + \left(\frac{1}{x}\right)^3 = p^3 - 3p. \)

येहेतु, \(a^3 + b^3 = (a + b)^3 - 3ab(a + b), \)
\[\therefore x^3 + \left(\frac{1}{x}\right)^3 = \left(x + \frac{1}{x}\right)^3 - 3x \cdot \frac{1}{x} \left(x + \frac{1}{x}\right) \]
\[= \left(x + \frac{1}{x}\right)^3 - 3 \left(x + \frac{1}{x}\right).\]

अतः एवं, निर्णय मान = \(p^3 - 3p. \)

उदाहरण 5. \(p + q + r \) एर घन निर्णय कर।
\[(p + q + r)^3 = (p + q + r)^3 \]
\[= (p + q)^3 + 3(p + q)^2 r + 3(p + q)r^2 + r^3 \]
\[= (p^3 + 3p^2 q + 3pq^2 + q^3) + 3(p^2 + 2pq + q^2)r \]
\[+ 3(p + q)r^2 + r^3 \]
\[= p^3 + q^3 + r^3 + 3pq^2 + 3p^2 q + 3p^2 r + 3qr^2 + 3q^2 r \]
\[+ 3qr^2 + 6pqr. \]

उदाहरण 6. \(x = 5 \) एवं \(y = -2 \) हैलें, \(x^3 + 9x^2 y + 27xy^2 + 27y^3 \) एर मान निर्णय कर।

प्रदान राशि = \(x^3 + 9x^2 y + 27xy^2 + 27y^3 \)
\[= (x + 3y)^3 = (5 - 6)^3 = (-1)^3 = -1. \]

प्रश्नमाला 23

निम्नलिखित राशियों द्वारा घन (cube) निर्णय करें:

1. \(x + 3. \)
2. \(2x + 1. \)
3. \(3a + b. \)
4. \(4x + 3y. \)
5. \(a^2 + 2y. \)
6. \(xy + yz. \)
7. \(a^2 b + c^2 d. \)
8. \(a + b + 2c. \)
9. \(2x + 3y + z. \)
10. \(x^3 + y^3. \)

सरल करें:

11. \((3m + 5n)^3 + 3(3m + 5n)^2 (2m - 5n) \)
\[+ 3(3m + 5n)(2m - 5n)^2 + (2m - 5n)^3. \]

12. \((3x - 8y)^3 + (9y - 2x)^3 + 3(x + y)(3x - 8y)(9y - 2x). \)
&

13.

(3a - 7b)^3 + (10b - 3a)^3 + 9b(3a - 7b)(10b - 3a).

14.

(5x - 2)^3 + (3 - 4x)^3 + 3(x + 1)(5x - 2)(3 - 4x).

15.

(3 - 7x)^3 + (8x - 1)^3 + 3(8x - 1)(3 - 7x)(x + 2).

16.

(a - b + c)^3 + (a + b - c)^3 + 6a[a^2 - (b - c)^2].

\[a^3 + b^3 \text{ এর মান নির্ণয় কর:} \]

17.

যখন \(a + b = 6 \) এবং \(ab = 7 \).

18.

যখন \(a + b = 7 \) এবং \(ab = 8 \).

19.

\(a + \frac{1}{a} = 3 \) হলে, দেখাও যে, \(a^3 + \left(\frac{1}{a} \right)^3 = 18 \).

20.

\(z + \frac{1}{z} = 4 \) হলে, \(z^3 + \left(\frac{1}{z} \right)^3 \) এর মান নির্ণয় কর।

নিম্নলিখিত রাশিগুলির মান নির্ণয় কর:

21.

\(x^3 + 6x^2 + 12x + 8 \), যখন \(x = -2 \).

22.

\(x^3 + 12x^2 + 48x + 64 \), যখন \(x = -5 \).

23.

\(8a^3 + 36a^2b + 54ab^2 + 27b^3 \), যখন \(a = -3 \) এবং \(b = 2 \).

24.

\(x^3 + 18x^2 + 108x + 351 \), যখন \(x = -11 \).

25.

\(x + y = 5 \) হলে, দেখাও যে, \(x^3 + y^3 + 15xy = 125 \).

26.

\(a^2 + b^2 = c^2 \) হলে, দেখাও যে, \(a^6 + b^6 + 3a^2b^2c^2 = c^6 \).

27.

\(p + q = 2 \) হলে, দেখাও যে, \(p^3 + q^3 + 6pq = 8 \).

58. সূত্র:

\[(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3, \]

\[= a^3 - b^3 - 3ab(a - b). \]

\[\left[(a - b)^3 = (a - b)(a^2 - 2ab + b^2) \right. \]

\[= a(a^2 - 2ab + b^2) - b(a^2 - 2ab + b^2) \]

\[= a^3 - 3a^2b + 3ab^2 - b^3. \]

এবং শেষক রাশি \(a^3 - 3ab(a - b) - b^3 \)

\[= a^3 - b^3 - 3ab(a - b). \]

অনুসরণি:

\[a^3 - b^3 = \{a^3 - b^3 - 3ab(a - b)\} + 3ab(a - b) \]

\[= (a - b)^3 + 3ab(a - b). \]
উদা. 1. \(3x - 4y\) এর ঘন নির্ণয় কর।

\[(3x - 4y)^3 = (3x)^3 - 3(3x)^2(4y) + 3(3x)(4y)^2 - (4y)^3\]
\[= 27x^3 - 3(9x^2)(4y) + 9(3x)(16y^2) - 64y^3\]
\[= 27x^3 - 108x^2y + 144xy^2 - 64y^3.\]

উদা. 2. \(a - b - c\) এর ঘন নির্ণয় কর।

\[(a - b - c)^3 = (a - b)^3 - 3(a - b)^2c + 3(a - b)c^2 - c^3\]
\[= (a^3 - 3a^2b + 3ab^2 - b^3) - 3(a^2 - 2ab + b^2)c\]
\[+ 3(a - b)c^2 - c^3\]
\[= a^3 - b^3 - c^3 - 3a^2b + 3ab^2 - 3a^2c + 3ac^2\]
\[- 3b^2c - 3bc^2 + 6abc.\]

উদা. 3. \(x = 2\) হলে, \(27x^3 - 54x^2 + 36x - 64\) এর মান নির্ণয় কর।

প্রথম রাশি = \((3x)^3 - 3(9x^2).2 + 3(3x).4 - 8 - 56\)
\[= (3x - 2)^3 - 56.\]
অতঃপৰ, নির্ণয়ের মান = \((7 - 2)^3 - 56 = 125 - 56 = 69.\]

প্রশ্নমালা 24

নিম্নলিখিত রাশিগুলিও ঘন নির্ণয় কর:

1. \(x - 2.\)
2. \(2x - 1.\)
3. \(2 - 3a.\)
4. \(3 - 4a.\)
5. \(2a - 3b.\)
6. \(5m - 4n.\)
7. \(2x - 5y.\)
8. \(2a - b - c.\)
9. \(2x - 3y - z.\)
10. \(p^2 - q^2 - r^2.\)

সমাধী করুন:

11. \((a + 2b)^3 - 3(a + 2b)(a - 2b) + 3(a + 2b)(a - 2b) - (a - 2b)^3.\)
12. \((3x - 8y)^3 - (2x - 7y)^3 - 3(3x - 8y)(2x - 7y)(x - y).\)
13. \((5x - 8)^3 - (3x - 8)^3 - 6x(5x - 8)(3x - 8).\)

নিম্নলিখিত রাশিগুলির মান নির্ণয় কর:

14. \(m^3 - 12m^2n + 48mn^2 - 64n^3, \) যখন \(m = 12 \) এবং \(n = 3.\)
15. \(27a^3 - 135a^2 + 225a - 125, \) যখন \(a = 4.\)
16. \(8 - 9a + 27a^2 - 27a^3, \) যখন \(a = 3.\)
17. \(216 - 144x + 108x^2 - 27x^3, \) যখন \(x = 3.\)
18. \[a - \frac{1}{a} = 3 \] হলে, \[a^3 - \left(\frac{1}{a} \right)^3 \] এর মান নির্ণয় কর।

19. \[c - \frac{1}{c} = 5 \] হলে, \[c^3 - \left(\frac{1}{c} \right)^3 \] এর মান নির্ণয় কর।

20. \[x - y = 3 \] হলে, দেখাও যে, \[x^3 - y^3 - 9xy = 27. \]

21. \[p - 2q = 4 \] হলে, দেখাও যে, \[p^3 - 8q^3 - 24pq = 64. \]

22. \[2a - 3b = 5 \] হলে, দেখাও যে, \[8a^3 - 27b^3 - 90ab = 125. \]

59. সূত্র : \[(a + b)(a^2 - ab + b^2) = a^3 + b^3.\]

\[
\begin{align*}
[(a + b)(a^2 - ab + b^2)] &= a(a^2 - ab + b^2) + b(a^2 - ab + b^2) \\
&= (a^3 - a^2b + ab^2) + (a^2b - ab^2 + b^3) \\
&= a^3 + b^3.
\end{align*}
\]

বিপরীতভাবে প্রকাশ করিলে, \[a^3 + b^3 = (a + b)(a^2 - ab + b^2). \]
স্বতরাং, \[a^3 + b^3 \] এর অকারে প্রকাশ করা যায় এরপে যে কোন রাশিকে সর্বদা উৎপাদকে বিশেষণ করা যায়।

উদাহরণ 1. \[x^4 - x^2 + 1 \] কে \[x^2 + 1 \] দ্বারা গুণ কর।

\[x^2 \] এর পরিবর্তে \(a\), এবং \(1\) এর পরিবর্তে \(b\) লিখিলে,

\[
x^4 - x^2 + 1 = (x^2)^2 - x^2.1 + 1^2
\]

\[= a^2 - ab + b^2.\]

অতএব, \[(x^2 + 1)(x^4 - x^2 + 1) = (a + b)(a^2 - ab + b^2) \]

\[= a^3 + b^3\]

\[=(x^2)^3 + 1^3 = x^6 + 1.\]

উদাহরণ 2. \[9x^2 - 12x + 16 \] কে \(3x + 4\) দ্বারা গুণ কর।

\(3x\) এর পরিবর্তে \(a\) এবং \(4\) এর পরিবর্তে \(b\) লিখিলে,

\[
9x^2 - 12x + 16 = (3x)^2 - (3x).4 + 4^2
\]

\[= a^2 - ab + b^2.\]

স্বতরাং, \[(3x + 4)(9x^2 - 12x + 16) = (a + b)(a^2 - ab + b^2) \]

\[= a^3 + b^3 = (3x)^3 + 4^3\]

\[= 27x^3 + 64.\]
উদ্দ. 3. $16a^2 - 20ab + 25b^2$ কে $4a + 5b$ দ্বারা গুণ কর।

$4a$ এর পরিবর্তে x, এবং $5b$ এর পরিবর্তে y লিখিলে,

$$16a^2 - 20ab + 25b^2 = (4a)^2 - (4a)(5b) + (5b)^2$$

$$= x^2 - xy + y^2.$$

সুতরাং,

$$(4a + 5b)(16a^2 - 20ab + 25b^2)$$

$$= (x + y)(x^2 - xy + y^2)$$

$$= x^3 + y^3 = (4a)^3 + (5b)^3$$

$$= 64a^3 + 125b^3.$$

উদ্দ. 4. $a^3b^3 + 8c^3$ কে উৎপাদকে বিভক্ত কর।

$$a^3b^3 + 8c^3 = (ab)^3 + (2c)^3$$

$$= (ab + 2c)((ab)^2 - (ab)(2c) + (2c)^2)$$

$$= (ab + 2c)(a^2b^2 - 2abc + 4c^2).$$

প্রশ্নালিকা 25

গুণ কর:

1. $x^2 - x + 1$ কে $x + 1$ দ্বারা।
2. $1 - 2x + 4x^2$ কে $1 + 2x$ দ্বারা।
3. $25p^2 - 5p + 1$ কে $5p + 1$ দ্বারা।
4. $49a^2 - 28ab + 16b^2$ কে $7a + 4b$ দ্বারা।
5. $64x^2 - 24xy + 9y^2$ কে $8x - 3y$ দ্বারা।
6. $a^2b^2 - 4abc + 16c^2$ কে $ab + 4c$ দ্বারা।
7. $a^2x^2 - 5abx + 25b^2$ কে $ax + 5b$ দ্বারা।
8. $25a^2 - 45ab + 81b^2$ কে $5a + 9b$ দ্বারা।

উৎপাদকে বিভক্ত কর (resolve into factors):

9. $a^3 + 1.$
10. $x^3 + 8.$
11. $8x^3 + 1.$
12. $27a^3 + 8.$
13. $8m^3 + 64.$
14. $64p^3 + 125.$
15. $8x^3 + 216y^3.$
16. $27a^3 + 343y^3.$
17. $216a^3x^3 + y^3.$
18. $27a^3b^3 + 64x^3y^3.$
19. $729a^3b^3c^3 + 1000x^3y^3z^3.$
20. $1331a^3b^6x^9 + 729c^3y^6z^9.$

60. সূত্রঃ $$(a - b)(a^2 + ab + b^2) = a^3 - b^3.$$

$$[(a - b)(a^2 + ab + b^2) = a(a^2 + ab + b^2) - b(a^2 + ab + b^2)$$

$$= (a^3 + a^2b + ab^2) - (a^2b + ab^2 + b^3)$$

$$= a^3 - b^3.]$$
টীকা। বিপরীতভাবে প্রমাণ করিলে, \(a^3 - b^3 = (a-b)(a^2+ab+b^2) \).
অতএব, \(a^3 - b^3 \) এর আকারে প্রমাণ করা যায় এরপর যে কোন রশিকে সর্বত্র উৎপাদকে বিশেষণ করা হাইতে পারে।

উদাহরণ 1. \(4a^2b^4 + 2ab^2 + 1 \) কে \(2a^2 - 1 \) দ্বারা ঘুর কর।

\[
(2ab^2 - 1)(4a^2b^4 + 2ab^2 + 1)
= (2ab^2 - 1)(2ab^2 + 1)^2 + (2ab^2).
= (2ab^2)^3 - 1^3 = 8a^3b^6 - 1.
\]

উদাহরণ 2. \(64x^6 - a^3y^6 \) কে উৎপাদকে বিশেষণ কর।

\[
64x^6 - a^3y^6 = (4x^2)^3 - (ay^2)^3
= (4x^2 - ay^2)(16x^4 + 4ax^2y^2 + a^2y^4).
\]

প্রশ্নমালা 26

ঘুর কর:

1. \(1 + 2x + 4x^2 \) কে \(1 - 2x \) দ্বারা।
2. \(x^2 + 3x + 9 \) কে \(x - 3 \) দ্বারা।
3. \(16a^2 + 4a + 1 \) কে \(4a - 1 \) দ্বারা।
4. \(x^4 + 2x^2yz + 4y^2z^2 \) কে \(x^2 - 2yz \) দ্বারা।
5. \(9m^2 + 6mnq + 4n^2q^2 \) কে \(3m - 2nq \) দ্বারা।

উৎপাদকে বিশেষণ কর:

6. \(125a^3 - 1 \). 7. \(343x^3 - 8y^6 \).
8. \(216k^3 - 125l^3 \).
9. \(1 - 512k^3 \). 10. \(729m^3 - 64a^3n^6 \).

61. সূত্র: \((x+a)(x+b) = x^2 + (a+b)x + ab \).

\[
= (x + a)(x + b) = x(x + b) + a(x + b)
= x^2 + (a + b)x + ab.
\]

টীকা। স্পষ্টই দেখা যায় যে, নিম্নলিখিত সূত্রগুলি উপরোক্ত সূত্রটির অন্তর্ভুক্ত:

1. \((x - a)(x - b) = x^2 - (a + b)x + ab \)
2. \((x - a)(x + b) = x^2 + (b - a)x - ab \)
3. \((x + a)(x - b) = x^2 + (a - b)x - ab \).
প্রথমাংশ:

$$(x - a)(x - b) = (x + (-a))(x + (-b))$$

$$= x^2 + ((-a) + (-b))x + ((-a) 	imes (-b))$$

$$= x^2 - (a + b)x + ab.$$

অন্তর্ভুক্ত যথার্থতাতে অনুরূপভাবে প্রমাণ করা যায়।

অতএব, আমরা 61 নিয়মের সহায়তায় আরও পরিকারভাবে নিম্নলিখিতরূপে প্রকাশ করিতে পারি:

$$(x + a)(x + b) = x^2 + (a + b) x + (a b).$$

উদাহরণ 1. $x + 3$ এবং $x + 4$ এর গুণফল লিখ।

যেহেতু, $3 + 4 = 7 \quad \text{এবং} \quad 3 \times 4 = 12 \quad \therefore \quad \text{নির্ণীত গুণফল} = x^2 + 7x + 12.$

উদাহরণ 2. $x - 7$ এবং $x + 4$ এর গুণফল লিখ।

যেহেতু, $-7 + 4 = -3 \quad \text{এবং} \quad (-7) 	imes 4 = -28 \quad \therefore \quad \text{নির্ণীত গুণফল} = x^2 - 3x - 28.$

উদাহরণ 3. $x + 5$ এবং $x - 9$ এর গুণফল লিখ।

যেহেতু, $5 - 9 = -4 \quad \text{এবং} \quad 5 \times (-9) = -45 \quad \therefore \quad \text{নির্ণীত গুণফল} = x^2 - 4x - 45.$

উদাহরণ 4. $x - 2$ এবং $x + 7$ এর গুণফল লিখ।

যেহেতু, $-2 + 7 = 5 \quad \text{এবং} \quad (-2) \times 7 = -14 \quad \therefore \quad \text{নির্ণীত গুণফল} = x^2 + 5x - 14.$

উদাহরণ 5. $x - 5$ এবং $x - 8$ এর গুণফল লিখ।

যেহেতু, $-5 - 8 = -13 \quad \text{এবং} \quad (-5) \times (-8) = 40 \quad \therefore \quad \text{নির্ণীত গুণফল} = x^2 - 13x + 40.$

প্রশ্নমালা. 27

গুণফল লিখ:

1. $x + 1$ এবং $x + 2$ এর।
2. $x + 2$ এবং $x + 9$ এর।
3. $x - 5$ এবং $x + 6$ এর।
4. $x - 3$ এবং $x - 11$ এর।
পঞ্চম অধ্যায়

সরল সমীকরণ (Simple Equation)

৬২. সংজ্ঞা: হয়েই রাশি সমতাচিহ্ন দ্বারা সমজ হইলে একটি সমীকরণ (equation) উৎপন্ন হইল বলা হইতে থাকে; এবং সমতাচিহ্নের উভয় পার্শ্ব বিশিষ্ট রাশিয়ের প্রত্যেকটিকে সমীকরণের একটি পার্শ্ব (side) বা পক্ষ (member) বলা হয়।

সমীকরণ শব্দটিকে অর্থ এইরূপ ব্যাখ্যা অর্থে এরূপ করা হয় না। একটি বীজগণিতীয় রাশি অর্থে একটি বীজগণিতীয় রাশির সমান হইলে, উহার সমতা রাশিয়ের ‘অন্তর্গত’ অক্ষর বা অক্ষরসমূহের বে কোন মানের জন্যও রক্ষিত হইতে পারে; বাধা, \((a + b)(a - b) = a^2 - b^2\); অথবা, অক্ষর বা অক্ষরসমূহের এক বা একাধিক নির্দিষ্ট মানের জন্যই কেবল মাত্র রক্ষিত হয়, যথা, \(4x = 8\) (যাহা কেবলমাত্র, \(x = 2\) হইলেই রক্ষিত হয়)। এই শেষোক্ত শেষিকেই শুধু সমীকরণ (equation) [প্রকৃতপক্ষে, সাপেক্ষ সমীকরণ (equations of condition) বলে, এবং পূর্বোক্ত শেষিকে অভেদ সমীকরণ (identical equation) বা সংজ্ঞের শুধু অভেদ (identity) বলে।

যথা, \((x + 4) + (2x + 3) = 3x + 4\) একটি অভেদ; কিন্তু \((x + 1) + (x + 3) = 3x + 2\) একটি সমীকরণ; কারণ, প্রথম সমীকরণে \(x\) এর যে কোন মানের জন্যই রক্ষিত
হয়, কিন্তু দ্বিতীয়টি কেবল মাত্র \(x = 2 \) হইলেই বজায় থাকে, অতএব কোন নামের জন্য বজায় থাকে না।

সমীকরণগুলি যে অক্ষরটির এক বা একাধিক নির্দিষ্ট মান সমীকরণের উভয়
পক্ষে সমানবিশিষ্ট করে, সেই অক্ষরটিকে সমীকরণের অজ্ঞাত রাশি (unknown quantity) বলে। সাধারণতঃ, সমীকরণের অজ্ঞাত রাশিকে অর্থালীর শেষাংশের
অক্ষরসমূহের (রথা, \(x, y, z \) ইত্যাদি) বা কোন একটি দ্বারা ঘটিত করা হয়।

অজ্ঞাতরাশির যে নির্দিষ্ট মানটি দ্বারা সমীকরণের উভয় পক্ষে সমান করে,
সেই মানটি বা মানগুলিদ্বারা সমীকরণটি সিদ্ধ হইয়াছে, এরপ্যান বলা হয়; এবং ঐ মানটি
বা মানগুলিকে সমীকরণের বীজ (root অথবা solution) বলে।

কোন সমীকরণ 'সমাধান করা' (to solve) অর্থে 'উচ্চার বীজ নির্ণয় করা'
রুক্তায়।

যে সমীকরণ প্রথমকর্তব্যিত্বিষ্টি একটি মাত্র অজ্ঞাত রাশি থাকে, তাহাকে
সরল সমীকরণ (simple equation) বলে।

63. অভেদচিত্রে: সমীকরণের সমাধানের একটি সাধারণ নিয়ম: নিয়মিত
বৃত্তীদ্বিভূজ উপর নির্ভর করে:

1. সমান সমান বস্তু যোগ করিলে যোগফলগুলিও
 সমান হইবে।

2. সমান সমান বস্তু বিযোগ করিলে বিযোগফলগুলিও
 সমান হইবে।

3. সমান সমান বস্তুকে সমান সমান বস্তু ঘাঁটু করিলে ঘাঁটুফলগুলিও
 সমান হইবে।

4. সমান সমান বস্তুকে সমান সমান বস্তু ঘাঁটু করিলে ঘাঁটুফলগুলিও
 সমান হইবে।

অনুসূচি 1. বৃত্তীদ্বিতে (1) ও (2) হইতে আমরা সমীকরণের বীজ নির্ণয় করিবার
নিয়মিত অভ্যাসহকারীর নিয়মটি প্রনদন করিতে পারি।

সমীকরণের যে কোন পার্থের একটি পদকে উচ্চার চিহ্ন পরিবর্তন করিয়া অপর
পার্থে পক্ষপদ প্রস্তাবর (transposition) করা যাইতে পারে।

এই প্রকরণে পক্ষপদ প্রস্তাবর (transposition) বলে।

ধরু যে \(x - a = b + c \); এই সমতার দুই পার্থেই \(a \) যোগ করিলে,

\[x - a + a = b + c + a, \]

[বৃত্তীদ্বিতে 1]
সহজ বীজগণিত

অথবা,

\[x = b + c + a; \]

আবার, উপরের সমতর দুই পার্শ্ব হইতে c বিয়োগ করিলে,

\[x - a - c = b + c - c = b, \ldots \ldots \] [সংজ্ঞার্থ 2]

অতএব প্রথম ক্ষেত্রে, বাম পার্শ্ব হইতে -c কে পঞ্জান্ত করিয়া ডান পার্শ্বে +a রূপে পাওয়া গেল, এবং দ্বিতীয় ক্ষেত্রে, ডান পার্শ্ব হইতে +c কে পঞ্জান্ত করিয়া বাম পার্শ্বে -c রূপে পাওয়া গেল।

তজ্জপ, \[x - a = b + c + d \] হইলে, \[x - a - b + c - d = 0 \] হইবে।

অন্তর্ভুক্তি 2. সমীকরণগঠিত এক্ষেত্রে চিহ্নই একসঙ্গে পরিবর্তন করিলে সমীকরণের সমতার নথি হয় না।

কারণ, ধর \[x - a = b + c; \]

তাহা হইলে, তৃতীয় সংজ্ঞার্থ অনুসারে, \[(x - a) \times (-1) = (b + c) \times (-1); \]

অথবা,

\[-x + a = -b - c. \]

64. সহজ উদাহরণসূত্র: উপরের নিয়মাবলীর সাহায্যে সরল সমীকরণের বীজ নির্ণয় করিবার পক্ষতি পরিকল্পনার করিয়া বুঝাইবার জন্য নিম্নলিখিত কতকগুলি উদাহরণ দেওয়া গেলঃ

উদ্দীপনা 1. সমাধান করঃ \[18x = 54. \]

[প্রশ্নের আগে একজন বলা যায়; যথা, \[18x = 54 \] হইলে, \[x \] এর মান কত ?]

যেহেতু, \[18x = 54, \]

অতএব, উভয় পক্ষে \[18 \text{ দ্বারা} \] ভাগ করিয়া,

\[18x \div 18 = 54 \div 18; \] অথবা \[x = 3. \]

সুতরাং, \[x \] এর নির্ণয়সূত্র মান = 3.

উদ্দীপনা 2. সমাধান করঃ \[3x + 5 = x + 19. \]

[প্রশ্নের আগে বলা যায়; যথা, \[3x + 5 = x + 19 \] হয়, তবে \[x \] এর মান কত ?]

যেহেতু, \[3x + 5 = x + 19, \]

অতএব, পক্ষতর করিয়া,

\[3x - x = 19 - 5; \] অথবা, \[2x = 14; \]
সরল সমীকরণ

এখন, উভয় পক্ষে 2 দ্বারা ভাগ করিয়া,

\[x = 7 \text{ পাওয়া গেল।} \]

স্থতরাং, \(x \) এর নির্ণয়ের মান = 7.

উদ্দ. 3. সমাধান করঃ \(11x + 2(3 - x) = 32 \).

বাম পক্ষে অপসারণ করিয়া \(-11x + 6 - 2x = 32 \),

আর হইল, \(-13x + 6 = 32 \),

আর হইল, \(-13x = 32 - 6 \), \(\ldots \) \[পক্ষান্তর করিয়া \]

আর হইল, \(-13x = 26 \).

এখন, উভয় পক্ষে -1 দ্বারা গুণ করিয়া,

\[(-1) \times (-13x) = (-1) \times 26, \]

আর হইল, \(13x = -26 \);

উভয় পক্ষে 13 দ্বারা ভাগ করিয়া,

\[x = -\frac{26}{13} = -2 \; . \]

স্থতরাং, \(x \) এর নির্ণয়ের মান = -2.

উদ্দ. 4. সমাধান করঃ \((x + 2)(3x + 4) - 6x = 10 + (3x + 2)(x + 1) \).

বাম পক্ষে \(= 3x^2 + 10x + 8 - 6x = 3x^2 + 4x + 8 \);

ডান পক্ষে \(= 10 + 3x^2 + 5x + 2 = 3x^2 + 5x + 12 \);

আর হইল, \(3x^2 + 4x + 8 = 3x^2 + 5x + 12 \).

উভয় পক্ষে হইতে \(3x^2 \) বাদ দিয়া,

\[4x + 8 = 5x + 12; \]

আর হইল, পক্ষান্তর করিয়া,

\[4x - 5x = 12 - 8; \text{ অর্থাৎ, } -x = 4; \]

কাজেই, \[x = -4 \]

[পূর্ণ নিয়মের দ্বিতীয় অংশের।]

স্থতরাং, \(x \) এর নির্ণয়ের মান = -4.

টীকা। অতি সহজেই প্রতিক্ষ করা যাইতে পারে যে, সমীকরণের উভয় পক্ষে 4 এর পরিবর্তে উহার এই মান (অর্থাৎ -4) বসাইলে, প্রত্যেক পক্ষই 40 এর সমান হয়।

উদ্দ. 5. \[\frac{x}{6} + 5 = \frac{x}{3} + \frac{x}{4} \] হইলে, \(x \) এর মান নির্ণয় কর।

যেহেতু, \[\frac{x}{6} + 5 = \frac{x}{3} + \frac{x}{4}, \]
সহজ বীজগণিত

উভয় পক্ষে হলুদ ল. মা. এ. দ্বারা সুপ করিয়া,

\[12\left(\frac{x}{6} + 5\right) = 12\left(\frac{x}{3} + \frac{x}{4}\right). \]

অথবা,

\[2x + 60 = 4x + 6x = 7x; \]

অতএব, পক্ষাত্তর করিয়া,

\[2x - 7x = -60, \]

অথবা,

\[-5x = -60; \]

কাজেই, \(-5\) দ্বারা উভয় পক্ষে ভাগ করিয়া, \(x = 12.\)

চূড়ান্ত, সমীকরণের নির্ণয় বোঝ = 12.

প্রশ্নমালা 28

নিম্নলিখিত সমীকরণগুলির সমাধান কর:

1. \(4x = 16.\)
2. \(3x = -15.\)
3. \(7x = -28.\)
4. \(-5x = 25.\)
5. \(\frac{x}{5} = -1.\)
6. \(-\frac{x}{3} = 20.\)
7. \(3x + 5(2 - x) = -16.\)
8. \(5(1 - x) + 3(2 - x) = -29.\)
9. \(4(2 - x) + 2(3 - 2x) = 30.\)
10. \(7(3 - 2x) + 5(x - 1) = 34.\)
11. \(4x + 3 = 2x + 5.\)
12. \(3x + 2 = x + 6.\)
13. \(5x - 6 = 2x + 3.\)
14. \(15x - 9 = 11x - 25.\)
15. \(4(x - 3) = 2(x - 6).\)
16. \(2(x - 15) = 5(x - 11) + 4.\)
17. \(19 - 3x = 5x + 35.\)
18. \(3x - 2 + 7(2x - 3) = 5(1 - 2x) - 59.\)
19. \(13x - 4(5x - 8) + 17 = 0.\)
20. \(14(x - 4) + 3(x - 5) = 6(7 - 2x) + 4.\)
21. \(8(2x - 7) - 9(3x - 14) = 15.\)
22. \(3x - 13(2x - 13) = 4x - 20.\)
23. \(49 + 13(5x + 27) = 8(5 + x) - 3x.\)
24. \(16 - 5(7x - 2) = 13(x - 2) + 4(13 - x).\)
25. \(8x + 5(x + 7) + 9(2x + 23) - 3(x + 6) = 0.\)
26. \((x - 7)(4x - 29) = (2x - 5)(3x - 17) + 1.\)
27. \((8x + 2)(2x - 6) = (4 - 3x)(1 - 2x) - 10.\)
28. \((3x + 5)(6x - 7) = (3x + 2)(9x - 13) - (3x + 1)(3x - 1).\)
29. \((x + 2)(2x + 5) = 2(x + 1)^2 + 13\).
30. \((x + 1)(4x - 7) - (x - 1)(x + 5) = 3(x + 2)^2 + 5\).
31. \(\frac{x}{2} + 5 = \frac{x}{3} + 7\).
32. \(\frac{x}{6} - \frac{x}{5} = \frac{x}{15} - \frac{x}{3} + 7\).
33. \(\frac{x}{2} - \frac{x}{3} + \frac{x}{4} = 2 - \frac{x}{4} + \frac{5x}{12}\).

শোন্ত অধ্যায়

সরল সমীকরণ বিষয়ক প্রশ্নাবলী

(Problems leading to Simple Equations)

65. সাংকেতিক বাক্য (Symbolical Expression): সমীকরণ বিষয়ক প্রশ্নাবলী সমাধান করার পক্ষে, প্রতিটি সাহায্যে এন্ড-প্রদত্ত সম্পদের ধারণার সাংকেতিক বাক্য (symbolical expression) গঠন করতেই প্রথাগত আন্তর্জাতিক। হুতরাং প্রশ্নাবলী সমাধান করার পূর্বে ছাড়া হেরার প্রথমত: এই বিষয়ের বিশেষ অভ্যস্ত হওয়া কর্তব্য। নিম্নপ্রদত্ত উদাহরণগুলি দ্বারা এই বিষয়ের বিশেষ ধারণা হিসেবে।

উদাহরণ 1. একজন লোক মাসিক \(x\) টাকা আয় করেন, অর্ধ মাসে সে কতগুলি সিকি আয় করিবে?

যেহেতু, \(1\) টাকা = ৪ সিকি,

অতএব, \(x\) টাকা = \(4x\) সিকি।

হুতরাং, লোকটি মাসে \(4x\) সিকি আয় করে;

কাজেই, তাহার অর্থনীতির আয় = \(4x\) সিকির অর্থ, অর্থাৎ \(2x\) সিকি।

উদাহরণ 2. একটি পোকা কোণ ধুতিতে যদি মিনিটে \(x\) ইঞ্চি করিয়া উঠিতে থাকে, তবে \(y\) ঘণ্টায় পোকাটি কত ফুট উঠিবে?

যেহেতু, \(1 \text{ইঞ্চি} = \frac{1}{12} \text{ফুট}\) ভাগ;

অতএব, \(x \text{ইঞ্চি} = \frac{x}{12} \text{ফুটের}\) ভাগ;

কাজেই, \(1 \text{মিনিটে পোকাটি} \frac{x}{12} \text{ফুট উঠে}\)।
সহজ বীজগণিত

60 মিনিটে পোকাটি \(\frac{x}{12} \times 60 \) ফুট উঠে
অর্থাৎ, এক ঘটায় পোকাটি \(5x \) ফুট উঠে;
\(y \) ঘটায় পোকাটি \((5x \times y) \) ফুট উঠে;
অতএব, নির্ণয় ফুট-সংখ্যা = \(5xy \).

উদাহরণ 3. প্রতি ঘটায় \(x \) মাইল হিসাবে গৃহণ করিলে, একজন লোকের 10 মাইল পথ যাইতে কত সময় লাগিবে?

এক ঘটায় \(x \) মাইল যায়;

এক মাইল যাওয়ার সময় = \[\frac{1}{x} \] ঘটা;

10 মাইল যাওয়ার সময় = \[\frac{10}{x} \] ঘটা;

অতএব, নির্ণয় সময় = \[\frac{10}{x} \] ঘটা।

উদাহরণ 4. দুই অঙ্কবিশিষ্ট কোন একটি সংখ্যার বামদিকের অঙ্কটি \(x \) দ্বারা এবং ডানদিকের অঙ্কটি \(y \) দ্বারা নিষিদ্ধ হইলে, সংখ্যাটিকে কি একাকে হচ্ছিল করিবে?

বামদিক হইতে আরস্ত করিয়া অষ্ট দুইটি যথাক্রমে,

4 ও 5 হইলে, সংখ্যাটি = \(10 \times 4 + 5 \);

5 ও 7 হইলে, সংখ্যাটি = \(10 \times 5 + 7 \);

4 ও 4 হইলে, সংখ্যাটি = \(10 \times 4 + 4 \); ইত্যাদি।

অতএব, ইহা সম্প্রতি যে, বামদিক হইতে আরস্ত করিয়া অষ্ট দুইটি যথাক্রমে \(x \) ও \(y \) হইলে, নির্ণয় সংখ্যাটি = \(10 \times x + y \), অর্থাৎ, \(10x + y \).

প্রশ্না 29

1. দুইটি সংখ্যার যোগফল 15; উভাদের একটি যদি \(x \) হয়, অপরটি কত?
2. দুইটি সংখ্যার বিয়োগফল 20; বড়টি \(x \) হইলে, অপরটি কত?
3. দুইটি সংখ্যার বিয়োগফল 25; ছোটটি \(x \) হইলে, বড়টি কত?
4. \(25 \) হইতে \(y \) কত বৃদ্ধ?
5. \(y \) হইতে \(2x \) কত ছোট?
6. 21 এর একটি উৎপাদক \(x \) হইলে, অপরটি কত?
7. কোন সংখ্যাটি 100 হইতে 3\(x \) পরিমিত ছোট?
8. \(3x \) হইতে কোন সংখ্যা বাদ দিলে \(3y \) অর্থশিষ্ট থাকে?
9. একটি লোক ঘটায় y মাইল হিসাবে পরিভাষণ করিলে, x ঘাটায় সে কত মাইল পরিভাষণ করিবে?

10. যদি এক ব্যক্তি ঘটায় y মাইল হিসাবে পরিভাষণ করে, তবে x মাইল পথে সে কত সময়ে পরিভাষণ করিবে?

11. এক ব্যক্তির বর্তমান বয়স x বৎসর হইলে, 20 বৎসর পরে তাহার বয়স কত হইবে? 3 বৎসর পূর্বে তাহার বয়স কত ছিল?

12. এক ব্যক্তি x দিনে 60 মাইল ভ্রমণ করিয়া থাকিলে, তাহার দৈনিক ভ্রমণের পরিমাণ কত?

13. একটি রেলগাড়ি x ঘাটায় 30 মাইল অতিক্রম করিলে, এক সেকেন্দ্রে উহা কত ফুট অতিক্রম করিবে?

14. আমি স্পষ্টে x আনা হিসাবে করচি করিয়া, আমার বাংসারিক আর 5x টাকা হইতে কত টাকা উঠাইতে পারি?

15. একপুরুষ ৫টি ক্রমিক সংখ্যা লিখ, যাহাদের মধ্যে একটি x.

16. x ঠিক মধ্যম সংখ্যা হয়, একপুরুষ তিনটি ক্রমিক সংখ্যার যোগফল নির্ণয় কর।

17. $2m + 1$ এর ঠিক পরূর্বী অন্যান্য সংখ্যাটি কত?

18. $2x$ এর ঠিক পরূর্বী রুখ সংখ্যাটি কত?

19. x ব্যক্তির একটি কাজ করিতে 10 দিন সময় লাগিলে, y ব্যক্তির কাজটি করিতে কত দিন সময় লাগিবে?

20. একটি ঘরের দৈর্ঘ্য a গজ এবং পুরুষ b ফুট হইলে, ঘরটির ক্ষেত্রফলের পরিমাণ বর্গফুটে একাকৃত কর।

21. পূর্বপুরুষে, 4 ফুটকে দৈর্ঘের একটি ধারিলে, ক্ষেত্রফলের সংখ্যামাত্র কত?

22. এক ব্যক্তি x মাইল পরিভাষণ পথ y ঘাটায় ভ্রমণ করিলে 20 মিনিটে সে কত মাইল ভ্রমণ করিবে?

23. এক ব্যক্তি x মাইল a ঘাটায় ভ্রমণ করিলে, কত সময়ে সে 16 মাইল পরিভাষণ পথে ভ্রমণ করিবে?

24. 20 বৎসর পূর্বে এক ব্যক্তির বয়স $x - 5$ বৎসর হইলে, তাহার বর্তমান বয়স কত? 30 বৎসর পরে তাহার বয়স কত হইবে?

25. দুই অঙ্কিত বিশিষ্ট কৗতা একটি সংখ্যার ডানদিকের অংকটি x এবং বামদিকের অংকটি y হইলে, সংখ্যাটিকে কিছু একাকৃত করিবে?

26. তিন অঙ্কিত বিশিষ্ট কৗতা সংখ্যার অঙ্কগুলী, বামদিক হইতে আরম্ভ করিয়া, যথাক্রমে x, y ও z হইলে, সংখ্যাটিকে কিছু একাকৃত করিবে?

27. পূর্বপুরুষের অঙ্কগুলিকে বিপরীতক্রমে লাগিলে যে সংখ্যাটি উৎপন্ন হয়, তাহারই বা কিছু একাকৃত করিবে?
৬৬. সমীকরণের সমাধান শেষ প্রশ্নাবলী (Easy Problems): বর্তমান অধ্যায়ের বিষয়ের সহিত সামগ্রিক হইবার নিমিত্ত নিম্নের কতগুলি নূতন দেওয়া হইল। এমনকি কেইহী অংশ বাণিজ্যে (unknown quantity কে) কিতিমহা দৃষ্টান্ত দেওয়া হইবে।

উদ্ধ। ১. A ও B একত্রে ৫৪০ টাকা মূল্যে বিক্রয় করিলে একটি বোধ করবার অর্থনীতি ভালো। মূল্য হল, A এর অংশ B এর অর্থনীতি তাঁি হিসাব, অর্থোকের অর্থনীতির সাথে সাথে নির্ণয় কর।

ধরি, B এর অংশ x দ্বারা হিসাব হইতেছে; তাহা হইলে, A এর অর্থনীতি পাইতে $2x$

অর্থনীতি, মোট মূল্য $x + 2x = 540$

কিন্তু, মোট মূল্য ৫৪০ টাকা হইলে আছে;

অর্থনীতি, $3x = 540$ টাকা।

$x = 180$ টাকা।

অর্থনীতি, B এর অর্থনীতি = ১৮০ টাকা।

স্ত্রীলোক, A এর অর্থনীতি = (2×180) টাকা, অর্থনীতি, ৩৬০ টাকা।

উদ্ধ। ২. ৩৪ সংখ্যাটিকে একপ্রকার তাই ভাগ কর, যেন ঐ ভাগফল ৪ এর সামনে হয়।

ধরি, বড় ভাগটি x দ্বারা হিসাব হইতেছে।

তাহা হইলে, ছোট ভাগটি $34 - x$ দ্বারা হিসাব হইবে।

অর্থনীতি, প্রারম্ভ সমাধানের,

$x - (34 - x) = 8$

অর্থনীতি, $2x - 34 = 8$

অর্থনীতি, $2x = 34 + 8 = 42$

অর্থনীতি, $x = 21.$

স্ত্রীলোক, বড় ভাগটি ২১ এবং ছোট ভাগটি 34 - 21, অর্থনীতি, ১৩।

উদ্ধ। ৩. কেন সংখ্যাটির এক-কৃতিয়ান্তসার, উহার এক-পক্ষাঙ্ক হইতে ৪ বড়? ধরি, নির্দেশ সংখ্যাটি x

তাহা হইলে, প্রারম্ভ সমাধানের,

$x \div 3 - x \div 5 = 4$; অর্থনীতি, $5x - 3x = 60$

অর্থনীতি, $2x = 60$; $x = 30.$

উদ্ধ। ৪. ১০ বৎসরের পূর্বে B এর বয়স ছিল এবং বর্তমানে A এর বয়স তাহার দিকে হইতে; বর্তমানে B অর্থনীতি A, ৯ বৎসর বড় হইলে, উহাদের প্রারম্ভকের বর্তমান বয়স কত?
সরল সমীকরণ বিষয়ক প্রশ্নাবলী ৮৯

ধরুন, \(B \) এর বর্তমান বয়স \(x \) দ্বারা হ্রাসিত হইল।
তাহা হইলে, \(A \) এর বর্তমান বয়স \(x + 9 \) দ্বারা হ্রাসিত হইবে।
কাজেই, ১০ বৎসর পরে, \(A \) এর বয়স \(= x + 9 + 10 = x + 19 \);
এবং ১০ বৎসর পূর্বে, \(B \) এর বয়স \(= x - 10 \);
এতে, প্রদত্ত সমীকরণটি, \(x + 9 = 2(x - 10) \); অথবা, \(x + 19 = 2x - 20 \);
প্রকৃতির কারণে, \(2x - x = 20 + 19 \); অথবা, \(x = 39 \);
অর্থাৎ, \(B \) এর বর্তমান বয়স ৩৯ বৎসর।
স্থতরাং, \(A \) এর বর্তমান বয়স ৪৮ বৎসর।

প্রশ্নমালা ৩০

১. ৯ ফুট দীর্ঘ একটি সরঞ্জামকে এক ঘণ্টা অংশে ভাগ করা হইল যে, এক অংশ অপর অংশের বিগুণ; প্রত্যেক অংশের দৈর্ঘ্য নির্ণয় কর।

২. একটি ঘণ্টের যত সংখ্যাক টাকা আছে, তত তুল সংখ্যাক আপনি আছে।
ঘণ্টের সংখ্যা ৩০ টাকা থাকি, উহাতে কতগুলি আপনি আছে?

৩. দুইটি সংখ্যার সমষ্টি ৫০ এবং অষ্টবার ৩০ হইল, সংখ্যা দুইটি নির্ণয় কর।

৪. এমন একটি সংখ্যা বাহির কর, যাহা ৯৬ ও উক্ত সংখ্যাটির অষ্টবারের পাচগুলি হয়।

৫. একটি সংখ্যার আটগুলি, সেই সংখ্যাটির অর্ধভাগ হইতে ৯০ বেশি; সংখ্যাটি নির্ণয় কর।

৬. একটি সংখ্যা হইতে ৪০ বিয়োগ করিলে, বিয়োগফল সংখ্যাটির এক
তৃতীয়াংশের সমান; সংখ্যাটি নির্ণয় কর।

৭. কোন একটি সংখ্যা ৩৫ হইতে যত বড় এবং ৬৭ হইতে কত ছোট, সেই মুদ্রি
তাহার অষ্টবার ২২; সংখ্যাটি নির্ণয় কর।

৮. কোন একটি সংখ্যা ১৬ হইতে যত বড় তাহার চারিগুলি, ৪১৬ হইতে সংখ্যাটি
যত ছোট তাহার সমান; সংখ্যাটি নির্ণয় কর।

৯. তিনটি ক্রমাঙ্ক অংশ সংখ্যার সমষ্টি ১২৯ হইল, সংখ্যা তিনটি নির্ণয় কর।

১০. একটি সংখ্যা নির্ণয় কর, যাহার হই ৭ দ্বারা গুণ করিলে, গুণফল ১৩২
হইতে যত বড়, সংখ্যাটি ১৩২ হইতে তত ছোট।

১১. ৯০ কে এক ঘটন দুইটি অংশে ভাগ কর, যেন এক অংশের তিনগুলি অপর অংশের
চারিগুলির সাহিত ভাগ করিলে, গুণফল ৮৩৫ হয়।
সহজ বীজগণিত

12. দুইটি সংখ্যার সমষ্টি 39 এবং একটির এক-পঞ্চমাংশ অস্তিত্বের এক-ষষ্ঠাংশের সমান; সংখ্যা দুইটি নির্ণয় কর।

13. কোন সংখ্যার এক-চতুর্থাংশ উচ্চার এক-নবমাংশ হইতে ৫ বেশি; সংখ্যাটি নির্ণয় কর।

14. কোন সংখ্যার এক-ষষ্ঠাংশ উচ্চার এক-অষ্ঠাংশ হইতে ৩ বেশি হইলে, সংখ্যাটি নির্ণয় কর।

15. মে এক রূপ ছুটি অংশে ভাগ কর, যখন এক অংশের দশগুণ অবশিষ্টাংশের নয়গুণ হইতে ১ বেশি হয়।

16. একটি বাজার এবং একটি বাজারের মূল্য একক মাসের এক-চতুর্থাংশে সহজ বাজারের মূল্যের ৫০ অংশ; প্রত্যেকটির মূল্য নির্ণয় কর।

17. ৫৪২০ দুই ব্যক্তির মধ্যে একপ্রকার ভাগ করিয়া দাও, যেন এক ব্যক্তির প্রত্যেক শিল্পীর এর জমি অপর ব্যক্তির অর্ধ-কুতুর পায়।

18. দুইজনের মুখার্জী তাদের একপাঁচ মেশক নিজেদের মধ্যে মূল্যাঙ্কনের সমানভাবে ভাগ করিয়া লইয়া রাজি হইল। A ৭২টি মেশ লইল এবং B, A কে ৬৩৫ দিয়া ৯২টি মেশ লইল। প্রত্যেকের মূল্য সমান হইলে, একটির মূল্য নির্ণয় কর।

19. দুই ব্যক্তির বয়সের অন্তর ১০ বৎসর। ১৫ বৎসর পূর্বে ছোটের বয়স কনিষ্ঠের ঠিক মিটে ছিল; প্রত্যেকের বর্তমান বয়স নির্ণয় কর।

20. পিতার বয়স বর্তমানে পুত্রের বয়সের তিনগুণ, এবং ১০ বৎসর পরে পিতার বয়স পুত্রের বয়সের দ্বিগুণ হইবে; প্রত্যেকের বর্তমান বয়স নির্ণয় কর।

সমগ্র অধ্যায়
বিন্দু সংস্থান (Plotting of Points)
লেখাবলী (Graphs)

৬৭. প্রকাশনিক (Introduction): দ্বিতীয় ও তৃতীয় অধ্যায়ে, বীজগণিতের বিষয়সূচী হলীক দৃষ্টিকোণ দ্বারা কি একাধিক অতি সহজে এবং সহজতম বুঝান বাহিতে পারি, তাহা দেখাইয়া হইবে। বস্তুতঃ, সমতলগুলো, লেখিক চিত্রগুলি
আলোচা বিষয়সমূহের সম্পূর্ণ ধারণা করিতে ব্যথা সহায়তা করে। লেখিক চিত্র সাহায্যে বীজগণিতীয় রাশিগুলির অভেদ সংস্থান ও বীজগণিতীয় সমীকরণসমূহের সমাধানের মুখ্যপথব্যবহার, বর্তমান অধ্যায়ে শ্রুতি বীজগণিতীয় রাশিগুলি কি ভাবে জ্যামিতিক বিদ্যাগুলি দ্বারা উচিত হইতে পারে, তাহাই লেখার হইবে। উপরোক্ত জ্যামিতিক চিত্রের লেখ (graph), এবং চিত্র সাহায্যে বীজগণিতীয় রাশি বিষয়ক প্রশ্ন সমাধানের প্রক্রিয়াকে লেখিক প্রধান (graphical method) বলা হয়।

68. অস্তন্ত্রকীন্ত্র অস্তন্ত্রসমূহ: শিক্ষাগুণের সর্বপ্রথমে নিয়ন্ত্রিত সম্পর্কে কিন্তু যথাস্থানে ব্যবহার করা শিক্ষা করিতে হইবে।

(ক) একটি অঙ্কিনীর পেশিল (a drawing pencil).

টীকা। পেশিলটির অঙ্কভাগ এরূপ স্থান হওয়া দরকার, যেন উহার অঙ্কিত রেখা বা বিন্দু অতি স্পষ্ট হয়।

(খ) এক জোড়া কাঁটা-কম্পাস (a pair of dividers).

(গ) দুইটি ত্রিকোণ (two set-squares).
(ঝ) এক ইঞ্জির দশাঙ্গ চিহ্নিত একাডামি মাপনী (a graduated ruler showing tenths of an inch).

(ঝ) এক ইঞ্জির শতাঙ্গচক চিহ্নিত একাডামি মাপনী (a scale giving hundredths of an inch).

উদ্দীপক 1. A বিন্দু দিয়া এবং BC এর সমান্তরালে করিয়া একটি সরলরেখা টান।

DEF ত্রিকোণাকারে এরপরাই স্থাপন কর, যেন উহার DE ধারটি ঠিক BC

কেবে সহিত মিলিয়া যায়; তাহার পর GHK ত্রিকোণাকার HK ধারটি DEF ত্রিকোণাকার
ঢাকাবলী

EF ধারাটির সহিত মিলাইয়া GHK জিকেজিকে এর সাথে সাথেই থাকে, যে উঁহার GH ধারাটি A বিন্দু দিয়া যাই; এই অবস্থানে GH এর বরাবর একটি রেখা টানিলেই উঁহa BC এর সমান্তরাল হইবে (উপরের চিত্র দেখ)।

উদাহরণ 2. BC সরলরেখার A বিন্দুতে BC এর উপর একটি লম্ব ঠানক।

গ্রাহণে BC এর সমান্তরাল DE রেখাটি ত্রিকো (চিত্র দেখ)। এখন GHK জিকেজিকের এর সাথে সাথেই থাকে, যে উঁহার HK ধারাটি DE-এর সহিত মিলিয়া যাই এবং GH ধারাটি A বিন্দু দিয়া যায়। তাহা হইলে, HG এর বরাবর একটি রেখাটি টানিলেই উঁহa BC এর উপর A বিন্দুতে লম্ব হইবে।

উদাহরণ 3. AB ও CD সরলরেখাদ্বয়ের দৈর্ঘ্য নির্ণয় কর।

A-
C-

শতাংশাগামক মাপনী এবং কোটি-কম্পাসের সাহায্যে দেখা গেল যে, AB এর দৈর্ঘ্য 2.24 ইঞ্চি এবং CD এর দৈর্ঘ্য 1.69 ইঞ্চি।

'প্রশ্নমালা '31''

1. AB সরলরেখাটিকে, উঁহার বিপরীত দৈর্ঘ্য পর্যায়ে বর্জিত কর।

- 'B

2. কোন একটি সরলরেখা AB এর উপর একটি বিন্দু D কে 'মধ্যবিন্দু' বলিয়া
খরা হইল; কিন্তু কম্পাস বারা মাপিয়া দেখা গেল যে, \(AD, BD \) হইতে কিছুই ছোট। কি করিবা এই ভুল সংশোধন করা যাইবে?

3. \(ABC \) একটি ত্রিভুজ এবং \(D, AC \) এর উপরিতল যে কোন এক বিন্দু (মিনের চিত্র দেখু) ; \(D \) বিন্দু দিয়া, \(AB \) এর দিকে \(CB \) এর সমান্তরাল করিয়া একটি রেখা অঙ্কিত কর।

4. উপরিতল চিত্রে, \(D \) বিন্দু দিয়া, \(AC \) এর যে পার্শ্বে \(AB \) অভিধিত উহার বিপরীত পার্শ্ব, \(BC \) এর সমান্তরাল করিয়া একটি সরলরেখা অঙ্কিত কর।

5. প্রশ্ন 3 এর চিত্রে, \(B \) বিন্দু দিয়া \(AC \) এর সমান্তরাল করিয়া একটি রেখা অঙ্কি।

6. কোন নির্দিষ্ট,কিভাবের শীর্ষবিন্দু তিনটি হইতে উহাদের বিপরীত বাহ্যবর্তীর উপর লয় অঙ্কিত কর।

7. প্রশ্ন 3 এর চিত্রে, \(AB, BC, CA \) বাহ তিনটির এবং \(AD \) ও \(DC \) এর, দৈর্ঘ্য নির্ণয় কর।

69. অপার্সিভার্ড কোয়ার্টার (Squared paper): অপার্সিভার্ড কাগজের একটি নরম পর্বতী পৃষ্ঠায় প্রকাশ হইল। উহাতে দুই শ্রেণীর সমস্ত বিভিন্ন সমান্তরাল সরলরেখা অঙ্কিত আছে। এক শ্রেণীর রেখামুখ কাগজের দৈর্ঘ্য এবং অপর শ্রেণীর রেখামুখ কাগজের এদের সমান্তরাল হওয়ায়, এখন শ্রেণীর একগুচ্ছের তিনটি রেখা দ্বিতীয় শ্রেণীর সকল রেখাকেই লম্বভাবে ছেদ করিয়াছে। একেবারে কোন শ্রেণীর রেখোগুলিই ধ্বংসাবশিষ্ট হয়। পরশুর এক দিশায় ইঙ্কি দেখে অঙ্কিত রিলিয়া, দুই ষ্ট্রির রেখামুখের পরশুর ছেদ হইতে কতকগুলি কুড়ি কুড়ি পরশুর-সমান বর্গক্ষেত্র।
উৎপত্তি হইয়াছে। আবার, উভয় শ্রেণীতেই কতকগুলি অপেক্ষাকৃত কুল রেখা দেখা যায়, যাহারা পরস্পর অর্ধ ইঞ্জি দূরে অবস্থিত। অতএব, এই কুল রেখাগুলি দ্বারাও কতকগুলি অপেক্ষাকৃত বড় পরস্পর-সমান বর্গক্ষেত্র উৎপত্তি হইয়াছে, যাহাদের প্রত্যেকের বাহর দৈর্ঘ্য অর্ধ ইঞ্জি। প্রথম দেখা যায় যে, প্রত্যেকটি বড় বর্গক্ষেত্রের মধ্যে পচিসটি ছোট ছোট বর্গক্ষেত্র আছে।

টাকা 1. বর্গক্ষেত্র কাগজের নমুনাটিতে, \(AB \) এর সমান্তরাল রেখাগুলিকে পূর্ব-পশ্চিম (east-west) রেখা এবং \(AD \) এর সমান্তরাল রেখাগুলিকে উত্তর-দক্ষিণ (north-south) রেখা বলা যাইতে পারে। উহাদিগকে যথাক্রমে অক্ষাংশিক (horizontal) ও উপক্ষেত্র (vertical) রেখা বলিয়াও কল্পনা করা যায়।

টাকা 2. অবিধার জন্য যে কোনো একটি ছোট বর্গক্ষেত্রের বাহর দৈর্ঘ্যকে \(\alpha \) ঘাঁটা লুটিতে করা যাইতে পারে।

টাকা 3. উপরে প্রদর্শিত কাগজখানি এরপেক্ষা নীল করা-যাইতে পারে যে, একটি ছোট বর্গক্ষেত্রের বাহর দৈর্ঘ্য এক সেন্টিমিটারের এক দুঃশাস্ত্র অর্ধে এক মিলিমিটার হয়। সে ক্ষেত্রে, প্রত্যেক বড় বর্গক্ষেত্রের বাহর দৈর্ঘ্য অর্ধে সেন্টিমিটার বা 5 মিলিমিটার হইবে।
উদাঃ 1. চারটি স্থান P, Q, R, S একত্রে অবস্থিত যে, Q, P হইতে পূর্বে 7 মাইল দূরে, R, P হইতে দক্ষিণে 11 মাইল দূরে, এবং S, Q হইতে উত্তরে 13 মাইল দূরে অবস্থিত। R হইতে S এর দূরত্ব নির্ণয় কর।

ধর, একটি ছোট বর্গক্ষেত্রের যে কোণ একটি বাহর দৈর্ঘ্যকে a দ্বারা সৃষ্ট করা হইল, এবং উহা এক মাইল পরিমিত দূরত্ব জাপন করে। তাহা হইলে, P, Q, R, S এর অবস্থান উপরের চিত্রনমুদ্রার হইবে, এবং $PQ = 7a$, $PR = 11a$, এবং $QS = 13a$।

এখন, R কে কেন্দ্র করিয়া এবং RS কে স্থায়ী লইয়া একটি যুক্ত-চাপ আকৃ 'এবং মন কর উহা। R বিন্দু 'দিয়া' অধিক 'পূর্ব-পশ্চিম' সরলরেখাটিকে T বিন্দুতে ছেদ করিল।

এখন, যেহেতু $RT = 25a$, অতএব, $RS = 25a$।

স্থতরাং, নির্ণয় দূরত্ব = 25 মাইল।

উদ্ধ 2. একটি সোজা খুঁটি উল্লিখিতে (vertically) রাড়ি করান আছে; উহার উঁচুতি হয় 4.৫ মুট। ৪.৫ মুট দীর্ঘ একগাঁছ দড়ির এক প্রান্ত খুঁটিটির উপরিভাগে
লেখাবলী

বাধিয়া অপর পাঠাটিকে একপায়ের মাটির সহিত সংলগ্ন করা হইল; তেন দড়িগাছা বেশ টান থাকে। খুঁটিটির পাদবিন্দু হইতে দড়িগাছার মাটিল্পাট পাঠাটিকের দূরত্ব নির্ণয় করি।

ধর, $3a$ (অর্থাৎ, একটি ছোট বর্গক্ষেত্রের এক বাহর ভিত্তিপথ) এক ফুট দৈর্ঘ্য স্থির করিয়াছে; তাহা হইলে, 8 ফুট দৈর্ঘ্য $24a$ দ্বারা এবং $8\frac{1}{2}$ ফুট দৈর্ঘ্য $26a$ দ্বারা স্থির হইবে। এখন, খুঁটিটি AB দ্বারা নির্দিষ্ট হইলে, $AB = 24a$।

B বিন্দু দিয়া অন্ধকার অন্তর্ভুক্ত (horizontal) সরলরেখাটির উপর C বিন্দু এক্ষণে লাগ, যেন $BC = 26a$. এখন B কে কেবল করিয়া এবং BC কে ব্যাপক লইয়া একটি বৃত্ত-চাপ তৈরী বা যাহা A বিন্দু দিয়া অন্ধকার অন্তর্ভুক্ত রেখাটিকে D বিন্দুতে কাটে। BD যুক্ত কর; তাহা হইলে, BD ই দড়িগাছার অবস্থান স্থির করিবে।

এখন, AD কে $10a$ (অর্থাৎ $9a + a$) এর সমান দেখা যায়; অতএব উহার দৈর্ঘ্য $3\frac{1}{2}$ ফুট।

বিভাগ—১
1. A, O হইতে পূর্বে 5 ফুট একক পরিমিত দূরে এবং P, A হইতে উত্তরে 4 একক পরিমিত দূরে অবস্থিত ; O হইতে P এর দূরত্ব নির্ণয় কর।

2. B, O হইতে 3 ফুট পশ্চিমে, এবং Q, B হইতে 7 ফুট দক্ষিণে অবস্থিত ; O হইতে Q এর দূরত্ব নির্ণয় কর।

3. C, O হইতে 2 গজ উত্তরে এবং R, C হইতে 6 গজ পশ্চিমে অবস্থিত ; O হইতে R এর দূরত্ব নির্ণয় কর।

4. D, O হইতে 2'1 ইঞ্চি দক্ষিণে এবং S, D হইতে 2'8 ইঞ্চি পূর্বে অবস্থিত ; S হইতে O এর দূরত্ব নির্ণয় কর।

5. A, O হইতে 2'7 ফুট পূর্বে অবস্থিত ; P, A এর উত্তরে এবং O হইতে 4'5 ফুট দূরে থাকিলে, P এবং A এর দূরত্ব নির্ণয় কর।

6. Q, B হইতে 2'4 ফুট দক্ষিণে আছে। O, B এর পূর্বে এবং Q হইতে 2'5 ফুট দূরে অবস্থিত হইলে, O হইতে B এর দূরত্ব নির্ণয় কর।

7. B, A হইতে 4৫ গজ পূর্বে ; C, A হইতে ৪ গজ উত্তরে এবং D, B হইতে 2 গজ উত্তরে অবস্থিত ; C এবং D এর দূরত্ব নির্ণয় কর।

8. B, A হইতে 25 ফুট উত্তরে ; P, A হইতে 40 ফুট পশ্চিমে ; এবং Q, B হইতে 20 ফুট পূর্বে অবস্থিত হইলে, Q এবং P এর দূরত্ব নির্ণয় কর।

9. দুইটি উল্লম্ব (vertical) কোণ যথাক্রমে 14 ফুট ও 3$\frac{1}{2}$ ফুট লম্বা এবং উহারা পরস্পর 13$\frac{1}{2}$ ফুট দূরে অবস্থিত ; উহাদের উপরিভিত্তিক প্রান্তভূজের দূরত্ব নির্ণয় কর।

10. 30 ফুট লম্বা একখানি মইর পাদপ্রান্ত একটি উল্লম্ব দেওয়াল হইতে 10 ফুট দূরে অবস্থিত। দেওয়ালের কত দূর পর্যন্ত মইখানির উচ্চতা পৌঁছাইবে? [প্রয়োজনীয়মণ্ডে নভাঙ্কিচ মাপনী ব্যবহার করা যাইতে পারে।]
ধরনের, কোন নির্দিষ্ট সমতলে XOX' এবং YOY' দুইটি পরম্পরাগত নির্দিষ্ট সরল-রেখা, এবং উহারা পরম্পর লম্বভাবে অবস্থিত (উপরে প্রদত্ত চিত্র দেখু)। P যদি সমতলস্থিত হয় কোন একটি বিন্দু হয়, তবে P এর অবস্থান কিকারে নির্ণয় করা যায়, দেখা যাক।

আমরা XOX' রেখাটিকে পূর্ব-পশ্চিম রেখা এবং YOY' কে উত্তর-দক্ষিণ রেখা বলিয়া ধরিয়া লইতে পারি। P বিন্দু দিয়া YOY' এর সমান্তরাল করিয়া একটি সরল-রেখা আকার এবং মনে কর, উহা XOX' রেখাটির সাহিত M বিন্দুতে মিলিত হইল। (চিত্রাঙ্কের) স্পষ্টই, M, O বিন্দুর পূর্বে এবং P, M বিন্দুর উত্তরে অবস্থিত। অতএব, OM এবং MP রেখাটির দৈর্ঘ্যান্তর জানা যাকিলে, P বিন্দুর অবস্থান নির্দেশ করা যায়।

উপরিচিত বর্গাক্ষিত কাগজের ছোট বর্গকেন্ট্রের এক বাঁকে দেখা একক-
সহজ বীজগণিত

নির্দেশক মনে করিলে, $OM = 9$ একক দীর্ঘ এবং $MP = 12$ একক দীর্ঘ। অতএব, P বিন্দুর অবস্থান আমরা নিম্নলিখিতভাবে স্পষ্ট করিতে পারি:

পূর্বে 9 একক দূরে, উত্তরে 12 একক দূরে।

টীকা 1. Q যদি এরূপ একটি বিন্দু হয়, যাহার অবস্থান 'পূর্বে 5 একক দূরে, উত্তরে 8 একক দূরে' এই বর্ণনা দ্বারা নির্দেশ করা হইতেছে, তাহা হইলে, Q বিন্দুটির অবস্থান নির্ণয় করিতে আমাদিগকে O বিন্দুর পূর্বে 5 একক পরিমিত দূরে একটি বিন্দু লইয়া, তৎপরে ঐ বিন্দু হইতে উত্তরে 8 একক পরিমিত দূরে বাইতে হইবে।

টীকা 2. R যদি এরূপ একটি বিন্দু হয়, যাহার অবস্থান ' O হইতে পশ্চিমে 7 একক দূরে, দক্ষিণে 4 একক দূরে', এই বর্ণনা দ্বারা স্পষ্ট হইতেছে, তবে R বিন্দুটির অবস্থান নির্ণয় করিতে হইলে, আমাদিগকে O বিন্দুর পশ্চিমে 7 একক পরিমিত দূরে বাইয়া, তথা হইতে দক্ষিণে 4 একক পরিমিত দূরে বাইতে হইবে।

প্রশ্নমালা 33

[প্রতিক্ষেত্রেই বর্গাকৃত কাগজ (squared paper) ব্যবহার করিতে হইবে।]

1. যে বিন্দুগুলির অবস্থান নিম্নলিখিত বর্ণনা দ্বারা স্পষ্ট, তাহাদিগকে স্থাপন করঃ

 (1) 5 একক পূর্বে, 7 একক উত্তরে;
 (2) 8 একক পশ্চিমে, 5 একক উত্তরে;
 (3) 10 একক পশ্চিমে, 12 একক দক্ষিণে;
 (4) 15 একক পূর্বে, 6 একক দক্ষিণে;
 (5) 8 একক পশ্চিমে, 13 একক উত্তরে;
 (6) 14 একক পূর্বে, 15 একক দক্ষিণে।

2. দ্বিতীয় অধ্যায়ের (অর্থাৎ, ধনাশি ও ধনাশি সম্মিলিত অধ্যায়ের) ব্যাখ্যা হইতে ইহা সুস্পষ্ট যে, '6 একক পশ্চিমে' অংশ হইতে '6 একক পূর্বে' একই কথা। তজ্জন্ত, '4 একক দক্ষিণে' বা '−4 একক উত্তরে' একই কথা, ইত্যাদি। এই অনুসারে, যে বিন্দুগুলির অবস্থান নিম্নলিখিত বর্ণনা দ্বারা নির্দিষ্ট, তাহাদিগকে স্থাপন করঃ

 (1) 7 একক পূর্বে, ' −8 একক উত্তরে;
 (2) '−10 একক পূর্বে, '6 একক উত্তরে;
 (3) '−9 একক পূর্বে, '−13 একক উত্তরে।
3. যদি ইহা সর্বসঙ্গতিক্রমে শীর্ষাক করিয়া লওয়া হয় যে, পূর্বদিকের দূরগুলিকে সকল ক্ষেত্রেই প্রথমে লেখা হইবে, তাহা হইলে বিন্দুর অবস্থান বর্ণনা করার সময় ‘পূর্বক ও উত্তরক’ শব্দ দুইটির উল্লেখ না করিলেও চলে। উপরের বীর্যক্রম আহ্সারে, যে বিন্দুগুলির অবস্থান নির্দেশক বর্ণনা দ্বারা নির্দিষ্ট হইতেছে, উত্তাম্যকে স্থাপন কর:

(1) 8 এক্ক, 9 এক্ক; (2) 6 এক্ক, -11 এক্ক;
(3) -12 এক্ক, 15 এক্ক; (4) -10 এক্ক, -14 এক্ক।

4. এতেক্যেলাই ‘এক্ক’ শব্দটিকে বাদ দিয়া, বিন্দুর অবস্থান আরও সংক্ষেপে স্থিত করা যায়; এই এখা অহসারে, নিম্নলিখিত বর্ণনা দ্বারা নির্দিষ্ট বিন্দুগুলি স্থাপন কর:

(1) 6, 4; (2) 13, 8; (3) -7, 6;
(4) 8, -6; (5) -10, -13; (6) -9, -15.

71. সংজ্ঞা: পূর্ববিন্যস্তের দেখান হইয়াছে যে, পরস্পর লম্বভাবে অবস্থিত XOY' এবং YOY' রেখা দুইটির সাহায্যে (পূর্ববিন্যস্তের তিন দেখা) সমতলাধীন যে কোন বিন্দুর অবস্থান নির্দেশ করা যায়। এই স্থির রেখাদ্বয়ের একটিকে অক্ষ (axis) বলে; এবং XOY' ও YOY' অক্ষের হেদবিন্দু O কে মূলবিন্দু (origin), XOY' কে x-অক্ষেরে এবং YOY' কে y-অক্ষেরে (axis of y) বলা হয়। আবার, OM এবং MP এর দৈর্ঘ্য মধ্যকে P বিন্দুর ভূজ-কোটি (co-ordinates) বলে; OM এর দৈর্ঘ্যকে ভূজ (abscissa বা x-co-ordinate) এবং MP এর দৈর্ঘ্যকে কোটি (ordinate বা y-co-ordinate) বলা হয়।

• ‘(x, y) বিন্দু’ বা ‘ভূজ (x, y) এর অর্থ ‘একটি’ বিন্দু যাহার ভূজ (abscissa) x-এক্ক দীর্ঘ এবং যাহার কোটি (ordinate) y-এক্ক দীর্ঘ’।

1. একটি বিন্দুর ‘x এবং y’ এর কথা বলা হইলে, প্রাক্তনকে তদ্রুপ ঐ বিন্দুর ব্যাখ্যাকে ভূজ ও কোটির কথাই বলা হয়।

2. মূলবিন্দু O এর সার্থক দিকে M বিন্দু থাকিলে, (পূর্ববিন্যস্তের তিন দেখা) P বিন্দুর ভূজ দৈর্ঘ্য এবং বামদিকে থাকিলে, ঐ ভূজটি ধারণাকর, বলা হইয়া থাকে।

• তদ্রুপ, P বিন্দু XOY' এর উপরিভাগে থাকিলে, P বিন্দুর কোটি দৈর্ঘ্যক, এবং P বিন্দু XOY' এর নীচে থাকিলে, P বিন্দুর কোটি ধারণাকর, বলা হয়।

টিকা 3. ‘বিন্দু সংস্থাপন করা’ (to plot a point) এর অর্থ বিন্দুটির ভূজ-কোটি দেওয়া থাকিলে, উহার অবস্থান নির্দেশ করা।
উদ্দৈ 1. নিম্নপ্রদিত চিত্রে, P_1, P_2, P_3, P_4 বিন্দুগুলির ওত্তোকাটির ভূজ-কোটি লিখ।

চিত্রের ব্যাখ্যা অনাবশ্যক। ছোট বর্গক্ষেত্রের এক বাহর দৈর্ঘ্যকে একক ধরিলে,

1. $OM_1=8$ একক, এবং M_1, O বিন্দুর ডানদিকে অবস্থিত; আবার, $M_1P_1=10$ একক, এবং P_1 বিন্দুটি XOX' এর উপরিভাগে অবস্থিত। অতএব, P_1 বিন্দুটির ভূজ ও কোটি যথাক্রমে 8 এবং 10।

2. $OM_2=5$ একক, এবং M_2, O এর বামদিকে; আবার, $M_2P_2=13$ একক, এবং P_2 বিন্দুটি XOX' রেখার উপরিভাগে। অতএব, P_2 বিন্দুটির ভূজ ও কোটি যথাক্রমে -5 ও 13।

3. $OM_3=10$ একক, এবং M_3, O এর বামদিকে; $M_3P_3=11$ একক এবং P_3 XOX' এর নীচে; কাজেই, P_3 বিন্দুটির ভূজ-কোটি (-10, -11)।
লেখালী

(4) $OM_4 = 15$ একক, এবং M_4, O এর ডানদিকে; এবং $M_4P_4 = 10$ একক, এবং P_4, XOX এর নীচে; তাই, P_4 বিন্দুটির ভূমকোণ $(15, -10)$।

উদাহ. 2. $(-1, 0)$, $(0, 1)$, $(1, 2)$ এবং $(2, 3)$ বিন্দুগুলি সংযোগ কর এবং দেখাও যে, উহারা সমরেখ।

ছোট বর্গক্ষেত্রের এক বাহুর 5 গুণকে একক ধরিয়া বিন্দুগুলিকে যথাস্থানে
সংযোগ কর।

ধর, P_1, P_2, P_3, P_4 দ্বারা এই বিন্দুত্বটিকে নিঃসৃত করা হইল [চিত্র দেখ]।

ঐত্য. 3. $2(3, 5)$ এবং $(4, 12)$ এই বিন্দুগুলি সংযোগ কর, এবং উহার দূরত্ব
নির্ণয় কর।
ছোট বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্যকে একক ধরিয়া বিন্দু দুইটি সংজ্ঞাপন কর। মনে কর, P ও Q ঐ বিন্দুরয়েকে নির্দেশ করিয়েছে [চিত্র দেখিয়ে]

P কে কেন্দ্র করিয়া এবং PQ কে ব্যাসার্ধ লইয়া একটি বৃত্ত-চাপ আকার; ধর উহা P বিন্দু দিয়া অতিক্রান্ত পূর্ব-পশ্চিম রেখাটিকে R বিন্দুতে ছেদ করিল। তাহা হইলে, নির্দেশ দূরত্ব $PQ = PR = 8'6$ একক (চিত্র হইতে)।

উদাহরণ ৪. $P(0, 4)$, $Q(5, -4)$ এবং $R(8, 2)$ বিন্দু তিনটি সংজ্ঞাপন কর এবং উহার দ্বারা উত্তর PQR ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।

ছোট বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্যকে একক ধরিয়া, P, Q ও R এর অবস্থান, চিত্রে সংজ্ঞাপ দেখানো হইয়াছে, সেইরূপ হইবে। এখন, PQR ত্রিভুজের অভ্যন্তরস্থ ছোট
বর্গক্ষেত্রগুলি গণনা কর; তারপর, যে বর্গক্ষেত্রগুলির ভিতর দিয়া ত্রিভূজের বাহু গিয়াছে, তাহাদের মধ্যে বেগুলির অর্ধ বা তর্কিক অংশ ত্রিভূজের ভিতরে আছে সেইগুলিকে গণনা করিয়া বাকিগুলি বাদ দাও। যেহেতু, একটি ছোট বর্গক্ষেত্র 'ক্ষেত্রফলের একক' হিসাব করে, অতুলন বর্গক্ষেত্রগুলির মোট সংখ্যাই ত্রিভূজের ক্ষেত্রফল নির্দেশ করিবে।

উপরেরূপ নিয়মে গণনা করিয়া PQR ত্রিভূজের অভ্যন্তরহস্ত বর্গক্ষেত্রগুলির মোট সংখ্যা 27 পাওয়া গেল।

অতএব, PQR ত্রিভূজের ক্ষেত্রফল = 27 একক (ক্ষেত্রফলের)।

উদাহরণ 5. $A(3, 2), B(12, 2), C(11, 8)$ এবং $D(2, 8)$ বিন্দু-চতুর্ভুজের সংগঠন কর। $ABCD$ চতুর্ভুজটির ক্ষেত্রফল, এবং AC ও BD এর ছেদবিন্দুর ভূজ-কোটি (co-ordinates) নির্ণয় কর।

ছোট বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্যকে একক ধরিলে, A, B, C ও D এর অবস্থান, চিত্রে দেখান হইয়াছে, সেইগুলি হইবে।

উদাহরণ 4 এ বর্ণিত নির্মাণ্যসূত্রে গণনা করিয়া $ABCD$ চতুর্ভুজের অভ্যন্তরহস্ত বর্গক্ষেত্রগুলির মোট সংখ্যা 54 পাওয়া গেল।

অতএব, নির্ণেত ক্ষেত্রফল = 54 একক (ক্ষেত্রফলের)।

আবার, চিত্র হইতে দেখা যায় যে, AC ও BD এর ছেদবিন্দু E এর ভূজ 7 একক এবং কোটি 5 একক।

অতএব, E বিন্দুটির ভূজ-কোটি $\left(7, 5\right)$.
প্রশ্নালিতা 34

1. নিম্নগুলির চিত্রে, \(P_1, P_2, P_3, P_4 \) বিন্দুগুলির ভূম-কোটি (co-ordinates) নির্ণয় কর, যখন (1) ছোট বর্গক্ষেত্রের একাংশ দৈর্ঘ্যকে একক ধরা হইবে ; (2) ছোট বর্গক্ষেত্রের একাংশ দৈর্ঘ্যের পাঁচগুলকে একক ধরা হইবে।

2. ছোট বর্গক্ষেত্রের একাংশ দৈর্ঘ্যের তিনগুলকে এককগুলি ধরা হইলে, \(P_1, P_2, P_3, P_4 \) বিন্দুগুলির ভূম-কোটি কি কি হইবে, তাহা নির্ণয় কর।

3. \((-4, -4), (7, 7) \) ও \((13, 13)\) বিন্দুগুলি সংখ্যাপন করিয়া প্রত্যক্ষ কর যে, উহার মূলবিন্দু (origin) দিয়া অভিক্রান্ত একটি সরলরেখার অবস্থিত।
4. \((-8, 4)\) এবং \((10, -5)\) বিন্দুর সংযোগ কর এবং তা উীলাহের সংযোজক পরামর্শ মূলবিন্দু দিয়া যায়।

5. \((8, 5)\) এবং \((-4, -11)\) বিন্দুর সংযোগ কর উহাদের দূরত্ব নির্ণয় কর।

6. \((-7, 9)\) এবং \((-12, 21)\) বিন্দুর সংযোগ কর উহাদের দূরত্ব নির্ণয় কর।

7. \((-11, 13)\) এবং \((3, -35)\) বিন্দুর চারিটি সংযোগ কর। উহাদের দূরত্ব নির্ণয় কর।

8. \((0, 0)\) এবং \((5, 5)\) বিন্দুর যুক্ত কর। এই সরলরেখার উপর বিন্দুটিকে বিন্দুটি নির্ণয় কর, বাহার ভূজ 11; এবং সেই বিন্দুটির ভূজ নির্ণয় কর, বাহার কোণ -13.

9. \((0, 7)\) এবং \((12, 0)\) বিন্দুর সংযোগক সরলরেখাটিকে উভয় দিকে বিন্দুটি নির্ণয় কর। এই রেখার উপর বিন্দুটিকে নির্ণয় কর, যাহার ভূজ -18, এবং সেই বিন্দুটির ভূজ নির্ণয় কর, যাহার কোণ -14.

10. \((-4, 0)\) এবং \((0, -4)\) বিন্দুর চারিটি সংযোগক সরলরেখাটিকে উভয়- দিকে বিন্দুটি নির্ণয় কর; এই রেখার উপর বিন্দুটিকে নির্ণয় কর, যাহার ভূজ -10, এবং সেই বিন্দুটির ভূজ নির্ণয় কর, যাহার কোণ -24.

11. \(A(3, 2), B(3, 7)\) এবং \(C(8, 5)\) বিন্দু তিনটি সংযোগ কর এবং উহাদের দ্বারা উৎপন্ন ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।

12. \(P(-2, 5), Q(6, 5)\) এবং \(R(8, 9)\) বিন্দু তিনটি সংযোগ কর এবং উহাদের দ্বারা উৎপন্ন ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।

13. \(D(5, 2), E(6, 8)\) এবং \(F(7, 12)\) বিন্দু তিনটি সংযোগ কর এবং উহাদের দ্বারা উৎপন্ন ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর।

14. \((11, 2), (3, 2), (3, 7)\) এবং \((11, 7)\) বিন্দু চারিটি দ্বারা উৎপন্ন চত্বরের ক্ষেত্রফল নির্ণয় কর; উহার কোণের ছাদবিন্দুর ভূজ-কোণ নির্ণয় কর।

15. নিম্নলিখিত বিন্দু চারিটি দ্বারা উৎপন্ন চত্বরের ক্ষেত্রফল নির্ণয় কর:
 (1) \((16, 6), (2, 3), (11, 14)\) এবং \((5, 11)\);
 (2) \((3, 6), (5, 4), (17, 16)\) এবং \((9, 18)\);
 (3) \((-12, 5), (-12, -10), (16, -10)\) এবং \((16, 5)\);
 (4) \((0, 1), (10, 8), (2, 13)\) এবং \((-2, 8)\).

16. এরূপ একটি তিনভুজ অঙ্কিত কর, বাহার তৃমি 12 সেটিমিটার এবং বাহ্যজ্ঞ যথাক্রমে 5 এবং 13 সেটিমিটার। তিনভুজটির ক্ষেত্রফল, উচ্চতা এবং বৃহত্তম বাহর বিপরীত কোণটি নির্ণয় কর।

17. এরূপ একটি তিনভুজ অঙ্কিত কর, বাহার তৃমি 6 সেটিমিটার এবং বাহ্যজ্ঞ যথাক্রমে 3 ও 5 সেটিমিটার। উচ্চতা ব্যাসস্তর দৃশ্যভাবে পরিমাপ কর।

18. নিম্নলিখিত বিন্দুগুলি সংস্থাপন কর:
 (i) (6, 0), (6, 3), (6, 4), (6, 6), (6, 8) এবং (6, 10);
 (ii) (-2, 7), (3, 7), (5, 7), (7, 7), (8, 7) এবং (10, 7).
 উপরিভিত (i) এর বিন্দুগুলি সমরেখ এবং (ii) এর বিন্দুগুলিও সমরেখ; দেখাও যে, এই রেখালাল যথাক্রমে \(y \)-অক্ষরেখা ও \(x \)-অক্ষরেখার সমান্তরাল; রেখাবিভূত দুগ্ধ-কোটি নির্ধারণ কর।

19. (3, 4), (4, 3), (5, 0), (-4, -3), (4, -3) বিন্দুগুলি সংস্থাপন কর। মূলবিন্দু হইতে উহাদের দূরত্বগুলি মাপিয়া দেখাও যে, উহারা মূলবিন্দুকে কেন্দ্র করিয়া অঙ্কিত একটি বৃত্তের উপরে অবস্থিত।

20. \(A(5, 2), B(9, 2), C(5, 8), D(9, 8) \) এবং \(E(7, 12) \) বিন্দুগুলি সংস্থাপন কর; \(ABDEC \) পঞ্চভুজটির ক্ষেত্রফল, এবং \(AD \) ও \(BC \) এর জ্যেদমিটুর বৃত্ত-কোটি, নির্ধারণ কর।

বিবিধ প্রশ্নমালা II

1. \((a+b)^2 = a^2 + 2ab + b^2 \), এই অভেদটির মধ্যে \(a \) এর পরিবর্তে \(x \) এবং \(b \) এর পরিবর্তে \(-y-z \) বসাইয়া \((x-y-z) \) এর বর্গ নির্ধারণ কর।

2. নিম্নলিখিত সমীকরণ প্রতিপন্ন কর:
 (i) \(a^2 + b^2 = \frac{1}{3}((a+b)^2 +(a-b)^2) \)
 (ii) \(4ab = (a+b)^2 - (a-b)^2 \).

3. প্রমাণ কর যে,
 \((y-z)(y+z-x)+(z-x)(x+y-z)+(x-y)(x+y-z)=0 \).
4. প্রমাণ কর যে,

\[(a - b)(a + 1)(b + 1) - a(b + 1)^2 + b(a + 1)^2 = (a - b)(a + b + 2ab).\]

5. \[a = x + m, \ b = y + m, \ c = z + m \] হইলে,

দেখাতে যে, \[a^2 + b^2 + c^2 - bc - ca - ab = x^2 + y^2 + z^2 - xy - yz - zx.\]

6. \[s = a + b + c \] হইলে,

প্রমাণ কর যে, \[(as + bc)(bs + ac)(cs + ab) = (b + c)^2(c + a)^2(a + b)^2.\]

7. \[(m + n)^3 - 27p^3 \text{ কে } m + n - 3p \text{ দ্বারা ভাগ কর।}\]

8. \[(9x^2 - 17xy + 13y^2)^2 \] ভাজা, \[49y^2(2x + 5y)^2 \] ভাগশেষ এবং \[3x^2 - xy + 16y^2 \] ভাজক হইলে, ভাগফল নির্ণয় কর।

9. \[x + \frac{2}{y} = \frac{8}{3} \text{ এবং } y + \frac{3}{x} = \frac{9}{2} \] হইলে, \[x^3y^3 + \frac{216}{x^3y^3} \] এর মান নির্ণয় কর।

10. দেখাতে যে,

\[(x - y + z)^2 + (x + y - z)^2 + 6(x - y + z)(x + y - z) = 8x^2.\]

II

নিম্নলিখিত সমীকরণ কাঠামো সমাধান করঃ

1. \[3(x - 3) - 2(x - 2) + x - 1 = x + 3 + 2(x + 2) + 3(x + 1).\]

2. \[(x - 3)(x - 5) = (x - 2)(x - 7).\]

3. \[2(x + 1)(x + 3) + 8 = (2x + 1)(x + 5).\]

নিম্নলিখিত সমীকরণ কাঠামো হইতে \(x\) এর মান নির্ণয় করঃ

4. \[(a + b)(b - x) = b(a - x).\]

5. \[\frac{mnx - p}{mn} + \frac{npx - m}{np} + \frac{pmx - u}{pm} = \frac{2p}{mn} + \frac{2m}{np} + \frac{2n}{pm}.\]

6. \[\frac{2x + 7}{7} - 9x + \frac{8}{11} = \frac{x - 11}{2}.\]

7. \[4x - \frac{x - 1}{2} = x + \frac{2x - 2}{5} + 24.\]

8. \[x - \frac{x - 2}{2} = 5 \frac{3}{4} - x + 10 + \frac{x - 2}{5} .\]

9. \[\frac{2x - 1}{2} + \frac{2x - 2}{3} + \frac{4x - 3}{4} = \frac{1}{12}.\]

10. \[\frac{2}{3}(x - 1) - \frac{5}{8}(2x - 3) + \frac{1}{2}(1 - 2x) = \frac{1}{13}(4x - 5).\]
৩। এমন একটি সংখ্যা নির্ণয় কর, যাহার সহিত ২৯ রোগ করিলে, যেগুলো এই সংখ্যাটির চতুর্থাংশ হইতে ৪ বেশী হয়।

৪। এমন একটি সংখ্যা নির্ণয় কর, যাহার এক-সপ্তমাংশ উভয়ের এক-নবমাংশ অপেক্ষা ৪ বেশী।

৫। এক ব্যক্তি তাহার মাসিক আয়ের দশমাংশের একভাগ সঞ্চয় করেন এবং বাকী অর্থের এক-কৌশলী ক্রমে যোগ করিয়া ঘরে বসেন। মাসিক চল্লি ঘরে বাবব তাহার সমস্ত আয়ের পাঁচালীগুলির তুলনায় ঘরে সঞ্চয় নিকট ৩০০ টাকা থাকিলে, ঐ ব্যক্তির মাসিক আয় কত?

৬। এক ব্যবসায়ী তাহার তহবিলের পাঁচালীগুলির তুলনায় চিনির ব্যবসায়, তিনজনের একভাগ পাঁচালী ব্যবসায় এবং বাকী অর্থের অর্থক কাজের ব্যবসায় খাটিয়া তাহার নিকট লন্দন ৩০০ রুবলী; ঐ ব্যবসায়ীর মোট মূলধন এবং তিনি কোন ব্যবসায়ে কত খাটিয়া, তাহা স্পষ্ট কর।

৭। A এর বয়স B এর বয়সের দ্বিগুণ এবং C এর বয়স অপেক্ষা ৪ বৎসর বেশী; উহাদের তিনজনের বয়সের সমষ্টি ৯৬ বৎসর হইলে, প্রাতঃকের বয়স নির্ণয় কর।

৮। দুইটি বলিলে অর্থের সমষ্টি ৫৪ পা. ১২ শি., এবং একটি বলিলে যত সাধারণ পাউন্ড আছে, অন্ততঃ তত সাধারণ বিলিং আছে; প্রাতঃকের বলিলের অর্থের পরিমাণ নির্ণয় কর।

৯। একখানি বর্গাক্ষিত কাগজে নিম্নলিখিত বিন্দু কাগজের অবস্থান নির্দেশ কর এবং দেখাও যে, উহার একটি আয়তক্ষেত্রের চারিটি কৌশলী বিন্দু: (১½, ২), (১½, -২), (১½, -২) এবং (১½, '২); আরও দেখাও যে, উপরকোষ্ট আয়তক্ষেত্রটির প্রাতঃকে কর্ত্তরই দৈর্ঘ্য ৫ একক।

১০। O একটি নির্দিষ্ট স্থান; A, O হইতে ২০ মাইল উত্তরে, B, A হইতে ৪ মাইল পূর্বে এবং C, B হইতে ১৭ মাইল দক্ষিণে অবস্থিত; দেখাও যে, 'O এবং C এর দূরত্ব ৫ মাইল।

১১। উপরকোষ্ট উদাহরণে, A, O হইতে ১২ মাইল পশ্চিমে, P, A হইতে ৫ মাইল উত্তরে, B, O হইতে ১২ মাইল পূর্বে এবং Q, B হইতে ৫ মাইল দক্ষিণে অবস্থিত হইলে, প্রমাণ কর যে, P এবং Q এর দূরত্ব ২৬ মাইল।

১২। একখানি বর্গাক্ষিত কাগজে নিম্নলিখিত বিন্দু কাগজের অবস্থান নির্দেশ কর এবং দেখাও যে, উহার মূলবিন্দুগামী একটি সূরলরেখায় অবস্থিত: '(-৫, -১০), (২, ২) এবং (৩, ৬).
অষ্টম অধ্যায়
জটিল যোগ ও বিয়োগ
(Harder Addition and Subtraction)

1. যোগ

72. তৃতীয় অধ্যায়ে যোগের নিম্নলিখিত নিয়মকলী বাঁধাহ্য করা হইয়াছে:

(1) যোগফল নিঃস্বার্থ কল্পনার সময়, যোগ্য রাশিগুলিকে যে কোন ক্রমে (order এ) ই লওয়া যাইতে পারে। যথা,

\[a + b + c = b + c + a = c + a + b \] । [নিয়ম 31]

ইহার পরে যোগের বিনিময়-নিয়ম (Commutative Law) বলে।

(2) যোগফল নিঃস্বার্থ কল্পনার সময়, যোগ্য রাশিগুলির কতক কতক এক এক
ভাগে লইয়া, উচ্চারিত কিংবা বিভাগে (group এ) ভাগ করা যায়, এবং নিঃস্বার্থ
যোগফল ঐ বিভাগসমূহের সমাকলনে প্রক্ষাল করা যায়। যথা,

\[a + b + c = a + (b + c) = (a + b) + c = b + (c + a) \] । [নিয়ম 32]

ইহার পরে যোগের সংযোগ-নিয়ম (Associative Law) বলে।

(3) সাঙ্কেতিক-সহযোগ (numerical co-efficient)-যুক্ত সদৃশপদসমূহের যোগফল একটি সদৃশপদ (like term) এবং পদগুলির সাঙ্কেতিক-সহযোগ বীজগণিতীয় সমষ্টিকে যোগফলের সাঙ্কেতিক-সহযোগ হইয়া থাকে। যথা, 5x, -2x, 7x এবং 6x এর যোগফল 16x;

\[5x + (-2)x + 7x + 6x = 16x \] । [নিয়ম 32, টাকা]

সাঙ্কেতিক সহযোগ, যোগমুখী লিঙ্গধিকৃত সদৃশ সহযোগ কেন্দ্রেই প্রযুক্ত হইয়াছে;

উচ্চারিত বিভাগে জটিল যোগফল নিঃস্বার্থ কল্পনার ভাষা প্রযোগ করা হইবে।

73. ভাগাংশ-সহযোগ (Fractional co-efficient) বিশিষ্ট সদৃশ-
রাশিসমূহের যোগফল নিঃস্বার্থ:

ভাগাংশ-সহযোগ রাশিসমূহের যোগফল নিঃস্বার্থ বিশিষ্ট হইলে, এরপর প্রতেকটি রাশিকে অংশকমাত্র সহযোগ
যোগ করিয়া তারপর রাশিগুলিকে, একটির নীচে একটি করিয়া, এরপরভাবে সমিলন করিয়ে হইবে,
নিম্নলিখিত উদাহরণগুলি দ্বারা প্রক্রিয়া-প্রণালী পরিকল্পনা করিয়া বুঝান হইতেছে:

উদ্দ্ব. ১. যোগ করঃ

\[\frac{2}{3} + \frac{y}{5} - \frac{z}{7} = \frac{2}{3} \times 10 + \frac{y}{5} + \frac{12}{7} + 7 \times x + 12a \text{ এবং } \frac{3}{10} - \frac{2}{3} y - \frac{2}{5} y - 2b.\]

প্রথম রাশি = \(\frac{1}{3}x + \frac{1}{5}y - \frac{1}{7}z\)

দ্বিতীয় রাশি = \(\frac{3}{10}x - \frac{1}{3}y + \frac{1}{2}z + 12a\)

তৃতীয় রাশি = \(-\frac{2}{3}x + \frac{1}{5}y + \frac{3}{2}z - 2b\)

∴ যোগফল = \(2x + \frac{1}{10}y + 2z + 12a - 2b\)

যোগফলে, \(x\) এর সহগ = \(\frac{1}{3} + \frac{3}{5} - \frac{3}{7} = \frac{1}{3} + \frac{3}{5} - \frac{3}{7} = \frac{7}{21} = \frac{1}{3}\)

\(y\) এর সহগ = \(\frac{1}{5} - \frac{1}{10} + \frac{3}{7} = \frac{2}{3} + \frac{3}{7} = \frac{19}{35} = \frac{19}{35}\)

\(z\) এর সহগ = \(-\frac{1}{3} + \frac{1}{2} + \frac{3}{2} = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}\)

\(a\) এর সহগ = \(0 + 12 + 0 = 12\)

\(b\) এর সহগ = \(0 + 0 - 2 = -2\).

টীকা। লক্ষ্য করিবে যে, প্রথম ও তৃতীয় রাশিতে \(a\)-সংযুক্ত পদের হারিয়াকে শূন্য রাখা হইয়াছে। অবিধার জন্য ঐ স্থান হইতে '০' যুক্ত করা যাইতেন।

উদ্দ্ব. ২. \(\frac{6x + 2y}{12} + \frac{4y - 3x}{8} + \frac{2x - 4y}{6}\)

এবং \(\frac{4x - 3y}{12} + \frac{6y - 4x}{8}\) এর যোগফল নির্ণয় কর।

পদ-সংযোগ প্রণালীতে প্রাত্যেকটি রাশিকে সরল করিয়া পূর্ববর্তী নিয়মাঙ্কারে যোগফল নির্ণয় করিতে হইবে। যেখানে,

প্রথম রাশি = \(\frac{6}{12}x + \left(-\frac{3}{12} + \frac{1}{12}\right)y + \left(-\frac{3}{12} + \frac{1}{12}\right)z = \frac{1}{12}x\)

দ্বিতীয় রাশি = \(\frac{4}{8}x + \left(-\frac{3}{8} + \frac{3}{8}\right)y + \left(-\frac{3}{8} + \frac{3}{8}\right)z = \frac{1}{8}x\)

তৃতীয় রাশি = \(\frac{6}{12}x + \left(-\frac{3}{12} + \frac{1}{12}\right)y + \left(-\frac{3}{12} + \frac{1}{12}\right)z = \frac{1}{12}x\)

∴ যোগফল = \(-\frac{1}{12}x + \frac{1}{8}y\)
ঝটিল যোগ ও বিয়োগ

উদ্দেশ্য ৩. \(x = 98, y = 79, a = 5\) এবং \(b = 4\) হলে,

\[
\begin{align*}
\frac{3}{7}x^3 + \frac{5}{11}y^5 - 20a^2 + \frac{49}{2}b^3, & \quad 17a^2 - \frac{27}{2}b^3 - \frac{23}{7}x^3, \\
-\frac{y^5}{11} + \frac{3}{2}b^3 - 3a^2 & \quad \text{এবং} \quad -\frac{23}{2}b^3 - \frac{4}{11}y^5 + 7a^2 + \frac{20}{7}x^3
\end{align*}
\]

এর সমষ্টির মান নির্ণয় কর।

এক্সেতে, রাশিগুলির যোগফল হইতেই নির্ণয় মান অতি সহজে পাওয়া যায়।

ঋণাত্মক রাশি = \(\frac{3}{7}x^3 + \frac{5}{11}y^5 - 20a^2 + \frac{49}{2}b^3\)

দ্বিতীয় রাশি = \(-\frac{23}{7}x^3 + 17a^2 - \frac{27}{2}b^3\)

তৃতীয় রাশি = \(-\frac{11}{1}y^5 - 3a^2 + \frac{3}{2}b^3\)

চতুর্থ রাশি = \(\frac{20}{7}x^3 - 1\frac{4}{1}y^5 + 7a^2 - \frac{33}{2}b^3\)

যোগফল = \(a^2 + b^3\)

= \(5^2 + 4^3 = 5 	imes 5 + 4 	imes 4 	imes 4 = 25 + 64 = 89\).

[যোগফল,]

\(x^3\) এর সহগ = \(\frac{1}{7} - \frac{8}{7} + 0 + \frac{2}{7} = \frac{3 - 3}{7} = 0\)

\(y^5\) এর সহগ = \(\frac{6}{11} + 0 - \frac{3}{11} - \frac{4}{11} = \frac{6 - 3}{11} = \frac{3}{11} = 0\)

\(a^2\) এর সহগ = \(-20 + 17 - 3 + 7 = 24 - 23 = 1\)

\(b^3\) এর সহগ = \(\frac{4}{2} - \frac{2}{3} + \frac{3}{2} - \frac{3}{2} = \frac{4 - 2 + 3 - 3}{2} = \frac{2}{2} = 1\).

৭৪. আক্ষরিক সহগবিশিষ্ট মিশ্ররাশির যোগফল নির্ণয়: সহগগুলি কেবলমাত্র অক্ষ হইলে, উহাদিগকে আক্ষরিক সহগ (literal co-efficient) বলা হয়। যথা, \(ax, 6bx, (c + d - e)x,...\) প্রভৃতিতে \(x\) এর সহগ বর্ণক্রমে \(a, 6b, (c + d - e),...\) রূপে, উহাদের অতোকেই আক্ষরিক সহগ বলে।

\(x\) এর সংম্পর্কে ধরিলে, \(ax, 6bx, (c + d - e)x,...\) প্রভৃতি পদগুলি কেবলমাত্র উহাদের সহগগুলিতে বিভিন্ন ; এইরূপে ধরিয়া \(ax, 6bx, (c + d - e)x,...\) পদগুলিকেও সমূহীক (like terms) বলা যায়।

\(ax\) এবং \(bx\) x-সংযুক্ত দুইটি সমূহীকদি হইলে, সমষ্টিতেই যোগজগৎের সমূহীক।

উহাদের যোগফল = \(ax + bx = (a + b)x\)

বী-০
সহজ বীজগণিত

অতএব, অক্ষরিক সহগবিশিষ্ট দুইটি সদৃশপদের যোগফল ও একটি সরুসুপদ, এবং যোগফলের অক্ষরিক সহগ, পদচ্ছেদের অক্ষরিক সহগ দুইটির সমষ্টির সমান।

47 নিম্নের 4 অংশ লিখিত হইতে বুঝা যায় যে, যোগের উপরোক্ত নিয়মটি দুই এর অধিক পদের বেলায়ও খাটিবে।

স্থান্ত্রাং, সহগগুলি সাংখ্যিক হউক বা অক্ষরিকই, হউক, সদৃশপদসমূহের যোগের নিয়ম উভয়ক্ষেত্রেই এক।

ঠাঁচ হইতেই বুঝা যায় যে, মিশ্রলিখিতসমূহের যোগের নিয়ম, উভয়ক্ষেত্রের সহগের ক্ষেত্রেই, এক থাকিবে।

মিশ্রলিখিত উদাহরণগুলিতের যোগের উপরোক্ত নিয়মটি উভয়ক্ষেত্রে বুঝা যাইবে।

উদ্দাঃ 1. যোগ করঃ

\[(b+c)x + (c+a)y + (a+b)z, \ ax + by + cz \quad \text{এবং} \quad x + y + z.\]

মিশ্রলিখিত তিনটিকে একটির নীচে একটি করিয়া একসঙ্গে সাজাইলে, এতে উভয়ের অন্তর্গত সদৃশপদগুলি তিনটি একই স্থানে বসে; সরবরাহিতের নীচে একটি রেখা চালিয়া গ্রেডের স্থানের সমষ্টি ঐ রেখার নীচে ছিলেন নিয়ে যোগফল পাওয়া যাইবে।

যথা,

প্রথম রাশি = \((b+c)x + (c+a)y + (a+b)z\)

দ্বিতীয় রাশি = \(ax + by + cz\)

তৃতীয় রাশি = \(x + y + z\)

অতএব, যোগফল = \((a+b+c+1)x + (a+b+c+1)y + (a+b+c+1)z\)

২. যোগ করঃ

\[(b-c)x + (c-a)y + (a-b)z, \quad (b-c)y + (a-b)z + (c-a)z \quad \text{এবং} \quad (b-c)z + (c-a)x + (a-b)y.\]

\(x, y \) ও \(z\) এর সম্পর্কে ধরিলে, রাশি তিনটি সদৃশপদবিশিষ্ট। কাজেই, পূর্ববর্তী উদাহরণে প্রদর্শিত নিয়মাংশের যোগফল নির্ণয় করা যাইবে।

যথা,

প্রথম রাশি = \((b-c)x + (c-a)y + (a-b)z\)

দ্বিতীয় রাশি = \((a-b)x + (b-c)y + (c-a)z\)

তৃতীয় রাশি = \((c-a)x + (a-b)y + (b-c)z\)

অতএব, নির্ণয়ের যোগফল = 0. \]
জোগ ও বিযোগ

[যোগফলে,

$$x$$ এর সংখ্যা $$= (b-c) + (c-a) + (a-b) = b-c+a-a+b = 0.$$ তাই, $$y$$ এবং $$z$$ এর সংখ্যা হলো প্রত্যেকে 0।]

উদাঃ ৩. $$(ax - by) + (bx - cz), (ay - bx) + (by - cz)$$ এবং $$(cz - ax) + (cz - by)$$ এর যোগফল নিশ্চিত কর।

$$x, y$$ এবং $$z$$ এর সম্পর্কে ধরিলে, রাশি তিনটি সম্পূর্ণ সমস্যায় যোগফল পাওয়া যাইবে। যথা,

- প্রথম রাশি $$= ax + bx - by - cz = (a+b)x - by - cz$$
- দ্বিতীয় রাশি $$= -bx + ay + by - cz = -bx + (a+b)y - cz$$
- তৃতীয় রাশি $$= -ax - by + 2cz = -ax - by + 2cz$$

অতএব, যোগফল $$= (a-b)y$$

[যোগফলে,

$$x$$ এর সংখ্যা $$= (a+b) - b - a = a + b - b - a = 0,$$
$$y$$ এর সংখ্যা $$= -b + (a+b) - b = -b + a + b - b = a - b,$$
$$z$$ এর সংখ্যা $$= -c - c + 2c = 0.$$

টিকা ১. ব্যন্নাসংখ্যক একটি মিশ্ররাশিকে সম্পূর্ণ মিশ্ররাশির সহিত (with like compound expressions) যোগ করিতে হইলে, ব্যন্নার অপসারণ না করিয়া যোগ করাই সুবিধাজনক (উদাঃ ২ দেখ।)

টিকা ২. অবশ্যই হইলে উদাঃ ৩ এ প্রদর্শিত নিয়মাঙ্কিত, যোগ্যমানসুক্তে পাওয়া যোগ প্রাপ্ত প্রণালী (process of collecting terms)’ মেতে সরল করিয়া লওয়া উচিত।

উদাঃ ৪. $$(a^2 + b^2)x + (b^2 + c^2)y + (c^2 + a^2)z, (b^2 + c^2)m + (c^2 + a^2)n,$$
$$(c^2 + a^2)p + (a^2 + b^2)q$$ এবং $$(a^2 + b^2)r + (b^2 + c^2)k$$ এর যোগফল নিশ্চিত হয়।

উপরোক্ত রাশিগুলি $$(b^2 + c^2), (c^2 + a^2)$$ এবং $$(a^2 + b^2)$$ এর সম্পর্কে সম্পূর্ণ বিবিধ যোগফল পাওয়া যাইবে।

- প্রথম রাশি $$= x(a^2 + b^2) + y(b^2 + c^2) + z(c^2 + a^2)$$
- দ্বিতীয় রাশি $$= m(b^2 + c^2) + n(c^2 + a^2)$$
- তৃতীয় রাশি $$= q(a^2 + b^2) + p(c^2 + a^2)$$
- চতুর্থ রাশি $$= r(a^2 + b^2) + k(b^2 + c^2)$$

অতএব, যোগফল

$$= (x + q + r)(a^2 + b^2) + (y + m + k)(b^2 + c^2) + (z + n + p)(c^2 + a^2).$$
[যোগফলে,

\((a^2 + b^2)\) এর সংগঠন \(= x + 0 + q + j = x + q + j,\)

\((b^2 + c^2)\) এর সংগঠন \(= y + m + 0 + k = y + m + k,\)

এবং \((c^2 + a^2)\) এর সংগঠন \(= z + n + p + 0 = z + n + p.\)]

প্রশ্নমালা 35

যোগ করেঃ

1. \(2x^2 - 5xy + y^2,\) \(4y^2 - 7x^2 - 5x + 2y,\) \(3xy - 5 + y - 6y^2\) এবং \(3 - 4y + 3x.\)

2. \(abc + a^2b - b^2c^2,\) \(5a^2b - 12b^2c^2 - 3abc,\) \(8b^2c^2 - 4a^2b + 2abc\) এবং \(2a^2b + 5b^2c^2.\)

3. \(m^3n^2 - 3mn + 2m^2n^3 + 6m^2n^2,\) \(-7mn - 10m^2n^2 + 5m^3n^2 - m^2n^3,\) \(2m^2n^2 - 5mn + 3m^2n^3 এবং -7m^3n^2 + m^2n^2 - 4m^3n^3.\)

4. \(12a^3b^2x - 29b^3x^2a + 37x^3a^2b + 45a^2b^2x^2,\) \(25b^3x^2a - 16a^2b^2x^2 - 18a^3b^2x - 5x^3a^2b,\) \(32a^2b^2x^2 - 23x^3a^2b + 20a^3b^2x - 28b^3x^2a\) এবং \(-9x^3a^2b - 14a^3b^2x - 60a^2b^2x^2 + 32b^3x^2a.\)

5. \(-15a^4b^4c^4 + 7c^4a^3b^5 - 24b^4c^3a^5 + 27a^4b^3c^5, 19c^4a^3b^3 - 15a^4b^3c^5 + 23a^4b^3c^5 + 8c^3a^2c^5, 29b^4c^3a^5 + 11a^4b^4c^4 - 9a^4b^3c^5 - 16c^3a^3b^5 এবং -3a^4b^3c^5 - 10c^4a^3b^5 + 3b^4c^3a^5 - 18a^4b^4c^4.\)

6. \(25a^3b^3 - 8b^3c^3 - 23c^3a^3 + 19a^2b^2c^2, 16c^3a^3 - 14a^2b^2c^2 - 19a^3b^3 - 12b^3c^3, 27a^2b^2c^2 + 13a^3b^3 + 17c^3a^3 - 20b^3c^3, 29b^3c^3 - 6a^2b^2c^2 - 21a^3b^3 - 13c^3a^3 এবং 10b^3c^3 + 3a^3b^3 + 4c^3a^3 - 27a^2b^2c^2.\)

7. \(5a^3 - 12b^3 - 53c^3 - 25abc, 38c^3 - 37a^3 - 7abc + 29b^3, 26abc - 17c^3 + 11b^3 + 43a^3, 13b^3 - 18abc + 4a^3 + 21c^3 এবং -14a^3 + 12c^3 + 21abc - 34b^3.\)

8. \(\frac{x}{2} + \frac{y}{3} + \frac{z}{5}, \frac{3x}{4} + \frac{2y}{3} + \frac{3z}{5} এবং \frac{3x}{4} + y + \frac{6z}{5}.\)

9. \(\frac{3x}{5} + \frac{4y}{7} + \frac{10z}{11}, \frac{2y}{7} + \frac{4z}{11} + \frac{x}{5} এবং \frac{8z}{11} + \frac{6x}{5} + \frac{8y}{7}.\)
10. $\frac{4x^2y}{15} + \frac{4y^2z}{13} + \frac{5z^2x}{17}$, $\frac{7y^2z}{13} + \frac{6z^2x}{17} + \frac{7x^2y}{15}$

6$^2x + \frac{4x^2y}{15} + \frac{2y^2z}{13}$.

11. $\frac{7a^2b}{19} + \frac{9b^2c}{17} + \frac{11ca^2}{21} + \frac{13ab^2}{35}$, $\frac{8b^2c}{19} + \frac{10c^2a}{21} + \frac{12a^2b}{19} + \frac{17bc^2}{35}$

$\frac{22ab^2}{35} + \frac{18bc^2}{35} + \frac{10ca^2}{21} + \frac{11ac^2}{21}$.

12. $\frac{2abc^2}{3} + \frac{3bca^2}{4} + \frac{4b^2c}{7}$, $\cdot \frac{9cab^2}{11} + \frac{3abe^2}{9} + \frac{2a^2d}{11}$.

$\frac{1}{4} bca^2 + \frac{4}{13} c^2d + \frac{4}{9} cab^2$এবং $\frac{9}{11} a^2d + \frac{3}{7} b^2d + \frac{9}{13} c^2d$.

13. $\frac{x - 2y + 2y - 3z + 3z - 4x}{2} + \frac{2x - 3y + 3y - 4z + z - 2x}{6}$

$\frac{3x - 4y + y - 2z + 2z - 3x}{12}$

14. $\frac{2x - 3y + 3y - 5z + 5z - 7x}{15} + \frac{3x - 5y + 5y - 7z + 2z - 3x}{35}$

$\frac{5x - 7y + 2y - 3z + 3z - 5x}{35}$

15. $\frac{2b - 3c + 3c - 4a}{bc} + \frac{4a - 2b}{ab}$, $\frac{2c - 3a + 3a - 4b}{ab} + \frac{4b - 2c}{bc}$

$\frac{2a - 3b}{bc} + \frac{3b - 4c}{ca} + \frac{4c - 2a}{ab}$

$\frac{ab}{bc} \cdot \frac{bc}{ca}$.

16. $\frac{bx - 3ay + 2by - 4az + 3bz - ax}{bcy} + \frac{cx - 4by + 3cy - 5bz + 4cz - bx}{abz}$

$\frac{ax - 2cy + 4ay - 3cz + 5az - cx}{ca}$

$\frac{ab}{bc} \cdot \frac{bc}{ca}$

$\frac{cy - ax}{ca} + \frac{az - by}{aby} + \frac{bx - cz}{bcz}$, $\frac{ay - bx}{bxy} + \frac{bz - cy}{bcy} + \frac{cx - az}{caz}$

$\frac{by - cx}{bxy} + \frac{cz - ay}{caz} + \frac{ax - bz}{abz}$.

$a = 5$, $b = 4$, $x = 8$, $y = 7$ হলে, নিম্নলিখিত রাশিগুলির মান নির্ণয় করি:

18. $(46a^4 + 38b^4 - 87abx^2 - 105y^4) + (47abx^2 + 85y^4 - 56a^4 - 58b^4) + (57y^4 + 75b^4 + 23a^4 + 63abx^2) + (-33b^4 + 8y^4 - 27abx^2 - 39a^4) + (26a^4 - 45y^4 - 22b^4 + 5abx^2)$.
19. \((35xy^4 + 207ab^4 - 98bx^4 - 62ya^4 - 83abx^2y) + (68bx^4 + 102ya^4 - 65xy^4 - 87ab^4 + 53abx^2y) + (26abx^2y - 75ab^4 - 25ya^4 + 43bx^4 + 53xy^4) + (28ya^4 - 29xy^4 - 65abx^2y + 45ab^4 + 26bx^4) + (-89abx^4 - 43ya^4 + 69abx^2y + 6xy^4 - 39bx^4)\).

20. \((57a^4bx + 25b^4xy - 143x^4ya + 37y^4ab - 253a^2b^2x^2) + (63x^4ya - 92y^4ab - 63a^4bx + 73a^2b^2x^2 - 85b^4xy) + (35y^4ab + 132b^4xy + 82a^2b^2x^2 + 36x^4ya + 96a^4bx) + (-50a^2b^2x^2 - 78a^4bx + 27y^4ab - 17x^4ya - 52b^4xy) + (61x^4ya - 20b^4xy + 148a^2b^2x^2 - 7y^4ab - 12a^4bx)\).

২ঃ বিযোগ

75. 35 নিয়মে ব্যাখ্যা করা হইয়াছে যে, ‘কোন একটি সরলবাণী \(a\) কে বিযোগ করা’ অর্থাৎ \(-a\) সরলবাণিজ্যে যোগ করা’, উভয়ই এক। কিন্তু, \(x - a = x + (-a)\)। তজ্জন্ত, ‘কোন একটি মিশ্রবাণীকে বিযোগ করা’ অর্থাৎ ‘ঐ বাণিজ্যে অন্তর্গত পদার্থের চিহ্ন পরিবর্তন করিয়া যোগ করা’ উভয়ই এক। একটি মিশ্রবাণীকে অপর একটি মিশ্রবাণী হইতে বিযোগ করার প্রণালী ৩৪ নিয়মে ব্যাখ্যা করা হইয়াছে। এ পর্যন্ত উক্ত নিয়ম সহজ সহজ ক্ষেত্রেই প্রয়োগ করা হইয়াছে; বর্তমানে উহা অল্পত্ব ক্ষেত্রে প্রয়োগ করা হইবে।

উপর। 1. \((b + c)y + (c + a)z + (a + b)x\) হইতে \(ax + by + cz\) বিযোগ কর।

\(x, y, z\) এবং সম্পর্কে সমূহপদগুলি সাজাইয়া ৩৪ নিয়মে বর্ণিত প্রণালী অনুসারে বিযোগকর নির্ণয়, করা হইবে।
বিয়োজন \(= (a + b)x + (b + c)y + (c + a)z \)

বিয়োজ্যা \(= ax + by + cz \)

বিয়োগফল \(= bx + cy + az \cdot \)

[বিয়োগফলে,

\(x \) এর সঙ্গে \(a + b - a = b \). তদ্ভাবে, \(y \) ও \(z \) সাহগবের যথাক্রমে \(c \) ও \(a \).]

উদাহরণ 2. \((b + c)^2yz + (c + a)^2zx + (a + b)^2xy \) হইতে

\((b - c)^2yz + (c - a)^2zx + (a - b)^2xy \) বিয়োগ কর।

বিয়োজন \(= (b + c)^2yz + (c + a)^2zx + (a + b)^2xy \)

বিয়োজ্যা \(= (b - c)^2yz + (c - a)^2zx + (a - b)^2xy \)

বিয়োগফল \(= 4bcyz + 4cazx + 4abxy \)

[বিয়োগফলে,

\(yz \) এর সঙ্গে \((b + c)^2 - (b - c)^2 = b^2 + 2bc + c^2 - (b^2 - 2bc + c^2) = b^2 + 2bc + c^2 - b^2 + 2bc - c^2 = 4bc \)।

তজ্জপ, \(zx \) এবং \(xy \) এর সাহগবের \(4ca \) এবং \(4ab \).]

উদাহরণ 3. নিম্নলিখিত সমতাটির শূন্যাসন পূরণ কর:

\((2a + 3b)x + (3b + 4c)y + (4c + 2a)z \)

\(= (a + b)x + (b + c)y + (c + a)z + \{ \} \).

স্পষ্টতায়, \((2a + 3b)x + (3b + 4c)y + (4c + 2a)z \) হইতে \((a + b)x + (b + c)y + (c + a)z \) বিয়োগ করিলে উহা রাশিটি পাওয়া যাইবে। প্রথম ও দ্বিতীয় উদাহরণে প্রদর্শিত নিয়মাঙ্কায় বিয়োগ করিয়া বিয়োগফল \((a + 2b)x + (2b + 3c)y + (3c + a)z \) পাওয়া যাইবে।

উদাহরণ 4. \(3\frac{4}{5}ax + 2\frac{1}{5}by + 6\frac{3}{5}z \) হইতে \(2'5ax - 3'7by - 8'32z \) বিয়োগ কর।

বিয়োজন \(= 3\frac{4}{5}ax + 2\frac{1}{5}by + 6\frac{3}{5}z \)

বিয়োজ্যা \(= 2'5ax - 3'7by - 8'32z \)

বিয়োগফল \(= \frac{5}{4}ax + \frac{13}{6}by + \frac{56}{6}z \).

[বিয়োগফলে,

\(ax \) এর সঙ্গে \(= 3\frac{4}{5} - 2'5 = \frac{1}{2} - \frac{5}{2} = \frac{1}{2} - \frac{1}{2} = \frac{5}{2} \);

\(by \) এর সঙ্গে \(= 2\frac{1}{5} - (-3'7) = 2\frac{1}{5} + 3'7 = \frac{13}{5} + \frac{17}{10} = \frac{5}{2} \);

\(z \) এর সঙ্গে \(= 6\frac{3}{5} - (-8'32) = 6\frac{3}{5} + 8'32 = \frac{43}{5} + \frac{41}{40} = \frac{63}{5} + \frac{41}{40} ;

= \frac{637}{40} = \frac{437}{40} = \frac{58}{8} \).]
চীকা। যোগের মত বিয়োগেও ভাঙ্গ-সহগুলিকে পাদিগণিতীয় নিয়মানুসারে সরল করিতে হইবে।

[বন্ধনীসংযুক্ত মিশ্রাঙ্গমিশ্রমূলে বিয়োগফল নির্ণয়কালে বন্ধনী অপসারণ না করাই কর্ষণ (1-3 উদাহরণে তির্থনি দেখ)।]

প্রশ্নমালা 36

বিয়োগ কর:

1. $3x^5 - 5x^4y + 2x^3y^2 - 7x^2y^3 + 6y^4$ হইতে $-7x^5 + 6x^4y - 8x^3y^2 - 13x^2y^3 + 9y^4$।
2. $5m^3nx - 17n^3xm + 26x^3mn - 13m^2n^2x - 19n^2x^2m$ হইতে $3m^3nx - 10n^3xm + 14x^3mn - 20m^2n^2x - 27n^2x^2m$।
3. $48x^6 - 31x^5y - 7x^4y^2 - 39x^3y^3 - 41x^2y^4 + 65xy^5 - 53y^6$ হইতে $37x^6 - 28x^5y + 43x^4y^2 - 54x^3y^3 - 67x^2y^4 + 84xy^5 - 93y^6$।
4. $3ax^4 - 5a^2x^3 + 6ybc^2 - 7y^2zbc + 8yz^2bc$ হইতে $-2yzbc^2 + 4yz^2bc - 2ax^4 - 9y^2zbc + 3a^2x^3$।
5. $25 - 16x^3y^5z - 17xy^3z^5 + 21x^3z^3y - 6x^2y^2z^2 + 8xyz^4$ হইতে $19x^3z^5y - 15x^3y^5z + 27 + 11xyz^4 - 12x^2y^2z^2 - 19xy^3z^5$।
6. $29x^4y^3z^2 - 37x^3y^4z^2 + 54x^2y^3z^4 - 45x^3y^2z^2 - 67x^4y^2z^3 + 89x^2y^4z^3$। হইতে $43x^3y^3z^2 - 23x^3y^2z^2 + 25x^4y^3z^2 - 66x^2y^4z^3 + 26x^2y^3z^4 + 35x^4y^2z^3$।
7. $41x^3y^4z^5 - 87x^3y^5z^4 - 28x^4y^5z^3 + 63x^4y^3z^5 - 55x^3y^3z^6 + 37x^3y^4z^3$। হইতে $29x^4y^3z^2 + 75x^5y^4z^3 + 13x^2y^3z^4 + 53x^3y^4z^5 - 94x^5y^3z^4 - 86x^4y^5z^3$।
8. $3x^2 - 5xy + 6y^2 + 7yz$ এর সহিত কত যোগ করিলে যোগফল $-x^2 - y^2 - yz$ হইবে?
9. $-5x^3 + 13x^2z^2 - a^2bx + 5bxy^2 + 7xyab$ এর সহিত কত যোগ করিলে যোগফল $x^3 + x^2y^2 + a^2bx - 2bxy^2 - 2xyab$ হইবে?
10. $5x^4 - 6x^3y + 7x^2y^2 - 8xy^3 - 19y^4$ এর সহিত কত যোগ করিলে যোগফল $3x^4 + 5x^2y^2 - 12y^4$ হইবে?
11. $-5x^3 - 3x^2y + 6x^2y^2 + 17x^2y^3 + 13xy^4 + 21y^5$ এর সহিত কত যোগ করিলে যোগফল $-7x^5 - 4x^3y^2 + 13x^2y^3 + 29y^5$ হইবে?
12. $2a^2 + 5xy - 6b^2$ হইতে কত বিয়োগ করিলে বিয়োগফল $a^2 + 2b^2$ হইবে?
13. \[5x^2 - 6xy + 4y^2 - 8x + 10y + 15 \] হইতে কত বিযোগ করিলে বিযোগফল \[x^2 + 2xy + 3y^2 + 4x + 5y + 6 \] হইবে?
14. \[3a^3 - 4a^2b + 5ab^2 - 8b^3 \] হইতে কত বিযোগ করিলে বিযোগফল \[a^3 - 2ab^2 + 7b^3 \] হইবে?
15. \[-8x^3y + 4x^2y^2 - 11xy^3 + 12x^2 - 13y + 27 \] হইতে কত বিযোগ করিলে বিযোগফল \[4x^3y - 3x^2y^2 - 11xy^3 + 20x^2 - 30y + 56 \] হইবে?
16. কোন রাশিমালা হইতে \[3a^2 - 7ab - 8bc + 9b^2 \] বিযোগ করিলে বিযোগফল \[2a^2 + 3ab + 3bc + 2b^2 \] হইবে?
17. কোন রাশিমালা হইতে \[-3x^3 + 5y^2 - 7xy + 8x - 9 \] বিযোগ করিলে বিযোগফল \[x^3 - 8y^2 + 2xy - 11x + 7 \] হইবে?
18. কোন রাশিমালা হইতে \[-7a^3 - 8b^2c - 13ac^2 + 3b^3 \] বিযোগ করিলে বিযোগফল \[4a^3 - 3b^2c + 7ac^2 - 8b^3 \] হইবে?
19. কোন রাশিমালা হইতে \[21x^3 - 37xy^2 + 42y^3 - 18x^2 + 19xy - 39 \] বিযোগ করিলে বিযোগফল \[-25x^3 + 15xy^2 - 87y^3 + 7x^2 - 43xy + 24 \] হইবে?

বিযোগ কর:
20. \[\frac{3}{4}x + \frac{3}{4} \cdot \frac{1}{2}y + 2 \cdot \frac{1}{2}z \] হইতে \[\frac{1}{3}x + \frac{2}{3}y + \frac{1}{3}z \]
21. \[-\frac{1}{3}ax + \frac{1}{3}y + \frac{1}{3}mz \] হইতে \[-\frac{1}{3}ax + \frac{1}{3}y + \frac{1}{3}mz \]
22. \[32 \cdot 39c^2by + 2 \cdot 37a^2cx - 6 \cdot 73c^3z \] হইতে \[1 \cdot 17a^2cx + 2 \cdot 31c^2by - 63 \cdot 18c^3z \]
23. \[3 \cdot 3lx + 3 \cdot \frac{3}{4}a^2b^3y - \frac{3}{4}nz - 3 \cdot \frac{1}{3}b^3c^5z - 2 \cdot 5my - \frac{3}{4}a^2c^3x \] হইতে \[\frac{3}{4}a^2c^3x + \frac{3}{4}b^3c^5z + 2 \cdot 3 \cdot 3lx + 3 \cdot 5my + \frac{3}{4}nz \]
24. নিম্নলিখিত সমতাগুলির উচ্চ অংশ নির্ণয় কর:
 (i) \[3 \cdot 2x + 5 \cdot 3y + 5 \cdot 4z -(\quad) = 2x + 3y + 6z ; \]
 (ii) \[17x + 23y + \frac{1}{3}z = 52x - 17y + \frac{4}{7}z -(\quad) ; \]
 (iii) \[1 \cdot 2a + 15 \cdot 52l^2 + 16m^2 + 14p, \]
 \[= (\quad) -(2 \cdot 2a + 3 \cdot 52l^2 + 4m^2 + 16p). \]

বিযোগ কর:
25. \[bc(b + c) + ca(c + a)ab(a + b) \] হইতে \[bc(b - c) + ca(c - a) + ab(a - b). \]
26. \[bc(b - c) + ca(c - a) + ab(a - b) \] হইতে \[2 \cdot 2(b - c) + b^2(c - a) + c^2(a - b). \]
$27. \quad 2(a^2 + b^2 + c^2 - ab - bc - ca)$ হইতে
\[(b - c)^2 + (c - a)^2 + (a - b)^2. \]

$28. \quad (1 + a)^2 x + (1 + b)^2 y + (1 + c)^2 z$ হইতে
\[(1 + a + a^2)x + (1 + b + b^2)y + (1 + c + c^2)z. \]

$29. \quad$ এক ব্যাক্তি এক বৎসরে মাসিক $(ax + by + cz)$ সংখ্যক টাকা উপার্জন করিয়া সেই বৎসরেই $(10ax + 13cz)$ সংখ্যক টাকা খরচ করিলেন। বৎসরের শেষে তাহার হাতে কত টাকা থাকিবে?

$30. \quad (50x + 71y + 18z)$ সংখ্যক ভেড়া হইতে $(13x + 12y)$ সংখ্যক এবং $(15y + 8z)$ সংখ্যক ভেড়া বিক্রীত হইল এবং $(3z + 23x)$ সংখ্যক ভেড়া মরিয়া গেল। কতগুলি ভেড়া অবশিষ্ট রহিল?

নবম অধ্যায়

জটিল গুণন

(Harder Multiplication)

$76. \quad$ তৃতীয় অধ্যায়ে গুণনের নিয়মলিখিত নিয়মগুলি ব্যাখ্যা করা হইয়াছে:

(1) $a \times b = b \times a; \quad [নিয়ম 42]

abc = bca = cab, \quad ইত্যাদি; \quad [নিয়ম 43]

অর্থাৎ, উৎপাদকগুলিকে যে কোন ক্রমেই লওয়া হউক না কেন, গুণফল সকল ক্ষেত্রেই এক থাকে;

ইহাকে গুণনের বিনিময় নিয়ম (Commutative Law) বলে।

(2) $(ab) \times c = a \times (bc) = b \times (ac) = a \times b \times c; \quad [নিয়ম 43]

অর্থাৎ, গুণফলের উৎপাদকগুলিকে যে কোন রকমে সজ্জন গুণ (grouped together)

করা যায়।

ইহাকে গুণনের সংযোগ নিয়ম (Associative Law) বলে।

(3) $a(b + c) = ab + ac. \quad [নিয়ম 47]

ইহাকে গুণনের বিভেদিত নিয়ম (Distributive Law) বলে।
(4) \(m \) এবং \(n \) দুইটি অখণ্ড ধনাত্মক সংখ্যা (positive integer) হলে,
\[a^m \times a^n = a^{m+n} \]

ইহাকে গুণের সূচক নিয়ম (Index Law) বলা হয়।

বর্তমানে, নিচুরাশির (compound expression এর) গুণন নিয়ম এবং প্রাপ্তিচার গুণনের উদাহরণ দেওয়া যাইতেছে।

77. প্রাপ্তিচার তৈরিতে হইবে যে,
\[(a+b)(c+d) = ac + ad + bc + bd.\]

\(c + d \) এর পরিবর্তে \(x \) ধরিয়া,
\[(a+b)(c+d) = (a+b)x = x(a+b) = xa + xb \]
\[= ax + bx = a(c+d) + b(c+d) \]
\[= ac + ad + bc + bd. \]

অনুরূপে, \(a - b = a + (-b) \) এবং \(c - d = c + (-d) \),

অতএব, \((a-b)(c-d) = (a+(-b))(c+(-d))\)
\[= ac + a(-d) + (-b)c + (-b)(-d) \]
\[= ac - ad - bc + bd. \]

78. প্রাপ্তিচার তৈরিতে হইবে যে,
\[(a+b+c+d+\ldots)(m+n+p+q+\ldots)\]
\[= a(m+n+p+q+\ldots) + b(m+n+p+q+\ldots) \]
\[+ c(m+n+p+q+\ldots) + d(m+n+p+q+\ldots) + \ldots \text{ ইত্যাদি} \]

\(m + n + p + q + \ldots \) এর পরিবর্তে \(x \) লিখিয়া,
\[(a+b+c+d+\ldots)(m+n+p+q+\ldots) = (a+b+c+d+\ldots)x \]
\[= ax + bx + cx + dx + \ldots \]
\[= a(m+n+p+q+\ldots) + b(m+n+p+q+\ldots) + c(m+n+p+q+\ldots) \]
\[+ d(m+n+p+q+\ldots) + \ldots \text{ ইত্যাদি} \]

এইরূপে, দুইটি বহুপদাশির (multinomial এর) গুণফল নির্ণয় করিতে হইলে,
বাধ্যতামূলকভাবে দুইটি পদ (term) কে অপরটির প্রত্যেকটি পদ দ্বারা গুণ
করিয়া সকল গুণফলগুলির সমষ্টি লাভ করিতে হয়।

উদাহরণ 1. \(2a + 3b \) কে \(4a + 5b \) দ্বারা গুণ কর।

\[(4a + 5b)(2a + 3b) = (4a)(2a) + (4a)(3b) + (5b)(2a) + (5b)(3b) \]
\[= 8a^2 + 12ab + 10ab + 15b^2 \]
\[= 8a^2 + 22ab + 15b^2. \]
উদাঃ ২। $3x - 7y$ কে $2x - 5y$ দ্বারা গুণ কর।

$(2x - 5y)(3x - 7y) = (2x)(3x) + (2x)(-7y) + (-5y)(3x) + (-5y)(-7y)$

$= 6x^2 - 14xy - 15xy + 35y^2$

$= 6x^2 - 29xy + 35y^2$

প্রশ্নমালা ৩৭

গুণ করঃ

1. $2a + 3b$ কে $a + b$ দ্বারা।
2. $2m - 3n$ কে $m - n$ দ্বারা।
3. $a + b + c$ কে $a + b + c$ দ্বারা।
4. $a - b + c$ কে $a - b + c$ দ্বারা।
5. $a - b - c$ কে $a - b - c$ দ্বারা।
6. $a - 2b - 3c$ কে $2a - b - c$ দ্বারা।
7. $2x - 3y - 4z$ কে $x - y - z$ দ্বারা।
8. $-5x + 2a - 3b$ কে $-x - a + b$ দ্বারা।
9. $x^2 + y^2 + z^2$ কে $x - y - z$ দ্বারা।
10. $xy + yz + zx$ কে $xy - yz - zx$ দ্বারা।

৭৯। কোন রাশিমালাকে অন্তর্গত কোন একটি অক্ষরের শক্তির অংকক্রম (descending order) বা উর্ধক্রম (ascending order) অনুসারে সাজানঃ রাশিমালার পদসমূহ, উহাদের অন্তর্গত যে কোন একই অক্ষরের বিভিন্ন শক্তিবিশিষ্ট হইলে, যদি ঐ পদগুলিকে এরূপে সাজান যায় যে, নির্দিষ্ট অক্ষরের সর্বোচ্চশক্তিবিশিষ্ট পদটি প্রথম, তর্কশক্তিবিশিষ্ট পদটি প্রথম পদের প্রায় দেখিতে পারি, তর্কশক্তিবিশিষ্ট পদটি দ্বিতীয় পদের দাবনিকে, ইত্যাদি, এবং ঐ অক্ষরবিভিন্ন পদটি অর্থাৎ একবার (constant) সর্বশেষে লিখিত হইল, তাহা হইলে উক্ত রাশিমালাকে নির্দিষ্ট অক্ষরের শক্তির অংকক্রম অনুসারে সাজান হইল, বলা হয়। এইরূপে বিপরীতভাবে সাজাইলে (অর্থাৎ প্রথম একবার, তত্ত্ব সর্বনিম্নশক্তিবিশিষ্ট পদটি, ইত্যাদি, এবং সর্বশেষে সর্বোচ্চ-শক্তিবিশিষ্ট পদটি লিখিলে রাশিমালাকে নির্দিষ্ট অক্ষরের শক্তির উর্ধক্রম অনুসারে সাজান হইল, বলা হয়। যথা, $a^5 x^3 + 3a^4 x^2 y - 5a^3 x^5 y^2 + 4a^2 x^4 y^3 - 2a x^2 y^4 + x^5 y^5$ রাশিমালাটি a এর শক্তির অংকক্রম অনুসারে, অথবা y এর শক্তির উর্ধক্রম অনুসারে সাজান রহিয়াছে। কিন্তু হইলে $-5a^3 x^5 y^2 + x^5 y^5 + 4a^2 x^4 y^3 + a^5 x^3 y^2 - 2a x^2 y^4 + 3a^4 x y$ এইরূপে লিখিলে, রাশিমালাটিকে x এর শক্তির অংকক্রম অনুসারে সাজান হইয়াছে, বলিতে হইবে।

৮০। কোন রাশিমালাকে অন্তর্গত একটি রাশিমালা দ্বারা গুণ করিয়া হইলে, গুণ-রাশি এবং গুণকরণশিল্প অন্তর্গত কোন একটি সাধারণ অক্ষরের শক্তির, হয় উর্ধক্রম, না
হয় অধক্রম অহসারে উভয়কেই সাজাইয়া নিয়লিখিত উদাহরণে প্রদত্ত নিয়মাচ্যায়ী গুণনক্রিয়া সম্পন্ন করিতে হয়।

উদা. 1. \[a^2 - b^2 - ab \text{ কে } ab - b^2 + a^2 \text{ দ্বারা গুণ কর।} \]

\[\text{গুণ = } a^2 - ab - b^2 \]

\[\text{গুণক = } a^2 + ab - b^2 \]

\[a^2 \text{ দ্বারা গুণন} = a^4 - a^3b - a^2b^2 \]
\[+ ab \text{ দ্বারা গুণন} = + a^3b - a^2b^2 - ab^3 \]
\[- b^2 \text{ দ্বারা গুণন} = - a^2b^2 + ab^3 + b^4 \]

অতএব, নির্ণয়ের গুনফল = \[a^4 - 3a^2b^2 + b^4 \]

টীকা। উপরোক্ত উদাহরণের প্রক্রিয়া-বিন্ধ্য হঃ

গুণা এবং গুণক উভয়কেই \[a \] এর অধক্রম অহসারে সাজাইয়া গুণের নীচে গুণককে লিখা হইয়াছে এবং গুণকের নীচে একটি রেখা টানা হইয়াছে; তৎপরে বামদিক হইতে আরম্ভ করিয়া, গুণকের প্রত্যেকটি পদ দ্বারা গুণকে গুণ করিয়া লবক গুণফলগুলিকে সংগ্রহ করিয়া একটি নীচে একটি এরূপে লিখা হইয়াছে যে, বিভিন্ন সারির সম্পূর্ণগুলি গুণফলগুলি একই দ্বারা সেই। সর্বশেষের সারির নীচে একটি রেখা টানিয়া বিভিন্ন অন্যের সীমাচিত্ত যোগফলগুলি উহার নীচে লিখিয়াই নির্ণয়ের গুনফল পাওয়া গিয়াছে।

উদা. 2. \[2a^2 - 3a^2 - 5ax \text{ কে } -3x^2 + 2a^2 + 5ax \text{ দ্বারা গুণ কর।} \]

গুণা এবং গুণক উভয়কেই \[x \] এর শক্তির উৎক্রম অহসারে সাজাইয়া,

\[\text{গুণা = } 2a^2 - 5ax - 3x^2 \]

\[\text{গুণক = } 2a^2 + 5ax - 3x^2 \]

\[2a^2 \text{ দ্বারা গুণন} = 4a^4 - 10a^3x - 6a^2x^2 \]
\[+ 5ax \text{ দ্বারা গুণন} = +10a^3x - 25a^2x^2 - 15ax^3 \]
\[- 3x^2 \text{ দ্বারা গুণন} = \]

\[\text{নির্ণয়ের গুনফল} = 4a^4 - 37a^2x^2 + 9x^4 \]

1. 3. \[2a^2b - 5ab^3 - a^4 + 3a^2b^2 \text{ কে } 2a^4 - 3a^3b + 4ab^3 - 5a^2b^2 \text{ দ্বারা গুণ কর।} \]

[গুণা এবং গুণক উভয়কেই \[a \] এর অধক্রম অহসারে সাজাইয়া গুণ কর।]
গুণা: \(-a^4 + 2a^3b + 3a^2b^2 - 5ab^3\)

গুণক: \(2a^4 - 3a^3b - 5a^2b^2 + 4ab^3\)

\[-2a^4 + 4a^3b + 6a^2b^2 - 10a^2b^3\]
\[+ 3a^2b - 6a^3b^2 - 9a^5b^3 + 15a^4b^4\]
\[+ 5a^6b^2 - 10a^5b^3 - 15a^4b^4 + 25a^3b^5\]
\[+ 4a^5b^3 + 8a^4b^4 + 12a^3b^5 - 20a^2b^6\]

নির্ণয়: \(-2a^8 + 7a^7b + 5a^6b^2 - 33a^5b^3 + 8a^4b^4 + 37a^3b^5 - 20a^2b^6\)

টাক। উপরোক্ত উদাহরণে, গুণা ও গুণক উভয়ই চতুর্থমানবিশিষ্ট সমান্তরাল রাশি এবং গুণফল তৃতীয়মানবিশিষ্ট সমান্তরাল রাশি। তর্ক দেখান যাইতে পারে যে, গুণা ও গুণক উভয়ই সমান্তরাল রাশি হইলে গুণফলও সমান্তরাল রাশি হইবে, এবং গুণফলের মান (degree of the product) রাশিয়ের মানের সমান হইবে। গুণা ও গুণক উভয়ই সমান্তরাল রাশি হইলে, গুণফলের শুরু অবস্থা করার পক্ষে এই নিয়মটি অত্য়ধ্বংসক; কারণ, গুণফল সমান্তরাল না হইলেই বুধিতে হইবে যে গুণের ভুল হইয়াছে।

উদা. 4. \(mx^2 - nx - p\) কে \(x^2 + px - 1\) দ্বারা ভাগ কর।

গুণা = \(mx^2 - nx - p\)

গুণক = \(x^2 + px - 1\)

\[
mx^4 - nx^3 - px^2
\]
\[+ pmx^3 - px^2 - px
\]
\[- mx^2 + nx + p
\]

গুণফল = \(mx^4 - (n - pm)x^3 - (p + pn + m)x^2 + (n - p^2)x + p\)

উদা. 5. \(\frac{1}{3}ax^3 + \frac{7}{10}b^2x^2y + 3.5cxy^2 + 1.05gx^2y^3\) কে \(2lx^2 + 3.5mxy + 1.5ny^2\) দ্বারা ভাগ কর।

[টাক। গুণা ও গুণক সাধারণ ও দশমিকে এই উভয়ই ভাগাভাগি বর্ধমান থাকিলে, সকল ভাগাভাগিকেই একজাতীয় ভাগাভাগি পরিণত করিয়া গুণনক্রিয়া সম্পন্ন করাই সহজাতক। বর্ধমানক্রিয়া, \(x^4\) কে দশমিকে পরিবর্তিত করিলে, দশমিকে বিদ্যুত পর অনেকগুলি অঙ্ক অস্বাভাবিক বদলি। সকল ভাগাভাগিকেই সাধারণ ভাগাভাগি পরিবর্তিত করা হইল।]
গণি = $\frac{3}{2}a^3x + \frac{7}{2}b^2x^2y + \frac{7}{2}cxy^2 + \frac{5}{2}d^2y^3$

গঞ্জ = $2lx^2 + \frac{5}{2}mxy + \frac{3}{2}ny^2$

$\frac{3}{2}a^5 + \frac{5}{2}b^2lx^4y + \frac{7}{2}c^2x^3y^2 + \frac{7}{2}d^2x^2y^3 + \frac{5}{2}e^2y^4$
$+ \frac{3}{2}a^3mx + \frac{5}{2}b^2mx^2y^2 + \frac{5}{2}c^2m^2x^3y^3 + \frac{5}{2}d^2m^3x^4y^4$
$+ \frac{3}{2}a^5x^5 + \frac{5}{2}b^2nx^4y^4 + \frac{5}{2}c^2n^2x^3y^5 + \frac{5}{2}d^2n^3x^2y^6 + \frac{5}{2}d^2n^4xy^7$

$\text{উদাহরণ 6.} \quad a^2 - ab + b^2, \quad a^2 + ab + b^2 \quad \text{এবং} \quad a^4 - a^2b^2 + b^4$

(i) \[a^2 - ab + b^2 \]
\[a^2 + ab + b^2 \]
\[a^4 - a^2b^2 + b^4 \]
\[a^4 + a^2b^2 + b^4 \]

(ii) \[a^2 - ab + b^2 \]
\[a^2 + ab + b^2 \]
\[a^4 - a^2b^2 + b^4 \]
\[a^4 + a^2b^2 + b^4 \]

অতএব, নির্দেশ যুগল = $a^5 + a^4b^4 + b^8$. ।

ঠাকুর। তিন বা তাদিক রাশির পর পর গুণনের ফলে যে রাশিটি পাওয়া যায়, তাহাকে ঐ রাশিগুলির ধারাবাহিক গুণফল (continued product) বলে। কতক-কাল রাশির ধারাবাহিক গুণফল নির্দেশ করিতে হইলে, উভার যে কোন দুইটির গুণফলকে অন্য একটি ধারা গুণ করিব, বড় গুণফলকে আবার অপর একটি ধারা, ইত্যাদিকযে, পর পর গুণ করিয়া যাইতে হয়।

ধারাবাহিক গুণনে, গুণা রাশিগুলিকে শুরুর কমান্দারে সাজাইয়া গুণ করিতে হয়।

81. “সহগ বিচিত্র করণে” প্রণালী (Method of detached co-efficients)। যদি গুণা এবং গুণক রাশিগুলির গুণমাণ একই অক্ষরের বিভিন্ন শক্তিতে পাওয়া যায়, তাহা হইলে পদগুলির আক্ষরিকাংশ হইতে সংখ্যা-সহগগুলিকে বিচিত্র করিয়া এবং ধারায় স্থান নিয়ন্ত্রণ করিয়া।
সহজ বীজগণিত

সহগুলি দ্বারাই গুণন্তরিত সংক্ষেপে ও সহজে সম্পন্ন করা যায়। রাশিদ্বয়ের অন্তঃস্কৃত সাধারণ অলংকারের কোন এক শক্তিবিশিষ্ট পদ বর্তমান না থাকিনে, ঐ পদটির সহগ 0 বলিয়া ধরিতে হয়।

নিম্নলিখিত উদাহরণগুলি দ্বারা একক্রিয়াপথে স্থপিতপদে বুঝিতে পারা যাইবে।

উদাহরণ 1. গুণ করঃ \(x^2 - 4x + 4 \) কে \(x - 2 \) দ্বারা।

\[
\begin{array}{c}
 x^2 - 4x + 4 \\
 x - 2 \\
 -4 + 4 \\
 -2 + 8 - 8
\end{array}
\]

নির্ণেয় গুণফল = \(x^3 - 6x^2 + 12x - 8 \).

উদাহরণ 2. গুণ করঃ \(3x^3 - 2x + 4 \) কে \(x + 5 \) দ্বারা।

\[
\begin{array}{c}
 3x^3 - 0x^2 - 2x + 4 \\
 x + 5 \\
 + 15 - 2 + 20
\end{array}
\]

নির্ণেয় গুণফল = \(3x^4 + 15x^3 - 2x^2 - 6x + 20 \).

প্রশ্নমালা 38

গুণ করঃ

1. \(25b^2 + 30ab + 9a^2 \) কে \(3a - 5b \) দ্বারা।
2. \(2a - 3b + 4c \) কে \(2a + 3b - 4c \) দ্বারা।
3. \(x^2 - x + 2 \) কে \(x^2 + x + 2 \) দ্বারা।
4. \(a^2 - 2ab + b^2 \) কে \(a^2 + 2ab + b^2 \) দ্বারা।
5. \(x^4 + x^2 + 1 \) কে \(x^4 - x^2 + 1 \) দ্বারা।
6. \(y^3 - x^2y^2 + x^3 \) কে \(x^3 + x^2y^2 + y^3 \) দ্বারা।
7. \(m^4 - m^2n^2 + n^4 \) কে \(m^2 + n^2 \) দ্বারা।
8. \(p^2q^2 + p^4 + q^4 \) কে \(-q^2 + p^2 \) দ্বারা।
9. \(a^3 + 5ab^2 - 6a^2b \) কে \(5b^2 + a^2 + 6ab \) দ্বারা।
10. \(x^3 - 3x^2 + 3x - 1 \) কে \(x^2 + 3x + 1 \) দ্বারা।
11. \(2ax^5 + a^4 + 3a^2x^2 + x^4 + 2a^3x \) কে \(a^2 + x^2 - 2ax \) দ্বারা।
12. \(a^3 + 3a^2b + b^3 + 3ab^2 \) কে \(3ab^2 - b^3 + a^3 - 3a^2b \) দ্বারা।
13. \(a^2 - \frac{1}{2} + x^4 - 4x + 2x^3 \) কে \(3 + x^2 - 2x \) দ্বারা।