CONTENTS

PREFACE .. v
NUMBERS OF PRINCIPAL FIGURES xvii
LIST OF SYMBOLS xviii

CHAPTER I

GENERAL PRINCIPLES

Properties of Concrete 1
Primary Object of Reinforcement 1
Examples of Concrete Structures 2
Advantages of Reinforced Concrete .. 2

MATERIALS

Steel .. 8
Patent Bars ... 10
Cement ... 12
Concrete .. 13
Sand ... 13
Aggregate ... 14
Proportions ... 16
Increase of Strength with Age 18
Consistency .. 18
Effect of alternate Wetting and Drying Cement Mortar 19
Effect of Variation of Stress on the Strength of Concrete and Steel 22

PART I

CALCULATION OF STRESSES UNDER KNOWN FORCES AND MOMENTS

CHAPTER II

SIMPLE BENDING AND SIMPLE COMPRESSION

Assumptions ... 25
Simple Bending 26
CONTENTS

T-Beams .. 38
Double Reinforcement 40
Simple Compression 44

CHAPTER III
BENDING COMBINED WITH DIRECT FORCES

Bending and Tension 47
Bending and Compression 51

CHAPTER IV
ADHESION AND SHEAR

Adhesion .. 71
Hooks and Bends 77
Shear in Beams 79
Shear in Slabs of T-Beams 90

PART II

THE DESIGN OF COLUMNS

CHAPTER V
STRENGTH OF COLUMNS

Difficulties in the Design 94
Short Columns 97
Value of Hooping and Binding 97
Eccentric Loading 109
Long Columns 110
Splices in Columns 113
CHAPTER VI

THE DETERMINATION OF THE DIRECT LOADS
ON COLUMNS

<table>
<thead>
<tr>
<th>Type of Spans</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Spans</td>
<td>116</td>
</tr>
<tr>
<td>Three Spans</td>
<td>117</td>
</tr>
<tr>
<td>Four or more Spans</td>
<td>120</td>
</tr>
</tbody>
</table>

CHAPTER VII

THE DETERMINATION OF THE ECCENTRIC STRESSES
IN COLUMNS

<table>
<thead>
<tr>
<th>Type of Columns</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Columns</td>
<td></td>
</tr>
<tr>
<td>Two Spans</td>
<td>123</td>
</tr>
<tr>
<td>Three Spans</td>
<td>136</td>
</tr>
<tr>
<td>Four or more Spans</td>
<td>141</td>
</tr>
<tr>
<td>Outside Columns</td>
<td></td>
</tr>
<tr>
<td>One Span</td>
<td>143</td>
</tr>
<tr>
<td>Two Spans</td>
<td>151</td>
</tr>
<tr>
<td>Three or more Spans</td>
<td>152</td>
</tr>
<tr>
<td>Value of the Eccentricity</td>
<td>153</td>
</tr>
</tbody>
</table>

PART III

THE DESIGN OF BEAMS AND SLABS

CHAPTER VIII

BEAMS

<table>
<thead>
<tr>
<th>Type of Beams</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shearing Forces</td>
<td>156</td>
</tr>
<tr>
<td>Bending Moments under Different Conditions of Loading</td>
<td>157</td>
</tr>
<tr>
<td>Variation of Size of Beams</td>
<td>172</td>
</tr>
<tr>
<td>General Considerations</td>
<td>179</td>
</tr>
<tr>
<td>Effect of Settlement of Supports</td>
<td>181</td>
</tr>
<tr>
<td>Bent Beams</td>
<td>183</td>
</tr>
<tr>
<td>Lintels</td>
<td>186</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER IX
SOLIDS
Bending Moments ... 188
Effect of the Deflection of the Supporting Beams 193
Shearing Forces and Adhesion 198

PART IV
APPLICATIONS AND GENERAL NOTES

CHAPTER X
RESERVOIRS
Stresses ... 201
Reservoirs below Ground 203
Circular Reservoirs .. 205
Rectangular Reservoirs; Bending Moments 210
Water Towers ... 212
Wind Moments ... 213

CHAPTER XI
RETAINING WALLS
Earth Pressures ... 219
Types and Proportions 223
Factor of Safety .. 224

CHAPTER XII
SPECIFICATIONS
General ... 233
Variations .. 233
Foundations ... 233
Column Loads ... 234
Floor Loads .. 234
CONTENTS

Test Loads ... 235
Materials ... 237
Finish ... 237
Centering .. 238
Vibration ... 239
Camber ... 239
Inspection ... 240
Wiring Bars ... 240
Leaving Holes .. 240
Maximum Depth of Beams ... 241
Maximum Size of Columns .. 241
Plain Concrete under Footings .. 241
Test Blocks .. 241
Fire-resisting Constructions ... 242

CHAPTER XIV

QUANTITIES AND NOTES ON PRACTICAL APPLICATIONS

Quantities ... 245
Additional Notes on Applications of Reinforced Concrete
 Use of Brick and Concrete Supports 247
 Foundation Rafts ... 247
 Piles ... 248
 Concrete Chimneys .. 249
 Notes for Students and the Need for Experimental Study 253
 Electrolytic Corrosion of Reinforcements 254

CHAPTER XIV

THE SPECIALIST ENGINEER, AND THE
CONTRACTOR

The Specialist Engineer .. 256
The Contractor ... 258
APPENDIX I

BEING MATHEMATICAL ANALYSES OF BEAMS UNDER VARIOUS CONDITIONS OF LOADING AND FIXING

NO. SUBJECT PAGE

List of Symbols 262

ONE SPAN
1 Uniform load, slope at the ends given 263
2 Load uniformly varying from zero at the ends to a maximum at the centre, slope at the ends given. 266
3 Concentrated load at midspan, slope at the ends given 267
4 Two concentrated loads at the third points, slope at the ends given 270
5 Uniform load, beam monolithic with columns 273

TWO SPANS
6 Uniform load, beam not monolithic with columns 273
7 Uniform load, beam monolithic with columns 274

THREE SPANS
8 Uniform load, beam monolithic with columns 277

GENERAL CASE
9 Any number of spans, uniform loads, spans and loads on different spans not necessarily equal 280

INTERIOR BAY OF BEAM OF MANY SPANS

UNIFORMLY DISTRIBUTED LOAD
10 Maximum moment at the centre 283
11 Maximum moment at the supports 284

LOAD UNIFORMLY VARYING FROM ZERO AT THE ENDS TO A MAXIMUM AT THE CENTRE
12 Maximum moment at the centre 286
13 Maximum moment at the supports 287
CONTENTS

<table>
<thead>
<tr>
<th>NO.</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Maximum moment at the centre</td>
<td>288</td>
</tr>
<tr>
<td>15</td>
<td>Maximum moment at the supports</td>
<td>289</td>
</tr>
</tbody>
</table>

TWO CONCENTRATED LOADS AT THIRD POINTS

<table>
<thead>
<tr>
<th>NO.</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Maximum moment at the centre</td>
<td>291</td>
</tr>
<tr>
<td>17</td>
<td>Maximum moment at the supports</td>
<td>292</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO.</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>BEAMS UNDER A LOAD UNIFORMLY VARYING FROM ZERO AT ONE END TO A MAXIMUM AT THE OTHER</td>
<td>293</td>
</tr>
</tbody>
</table>

EFFECT OF SETTLEMENT OF SUPPORTS ON THE CENTRE MOMENTS OF CONTINUOUS BEAMS

<table>
<thead>
<tr>
<th>NO.</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Many Spans</td>
<td>296</td>
</tr>
<tr>
<td>20</td>
<td>Two Spans</td>
<td>298</td>
</tr>
</tbody>
</table>

APPENDIX II

SECOND REPORT OF THE R.I.B.A. ON REINFORCED CONCRETE (1911)

<table>
<thead>
<tr>
<th>Subject</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>301</td>
</tr>
<tr>
<td>Prefatory note</td>
<td>304</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>305</td>
</tr>
<tr>
<td>Materials</td>
<td>306</td>
</tr>
<tr>
<td>Methods of calculation</td>
<td>310</td>
</tr>
<tr>
<td>Shear reinforcement</td>
<td>315</td>
</tr>
<tr>
<td>Pillars and pieces under direct thrust</td>
<td>317</td>
</tr>
<tr>
<td>Pillars eccentrically loaded</td>
<td>321</td>
</tr>
<tr>
<td>Long pillars</td>
<td>323</td>
</tr>
<tr>
<td>Appendix VII., Bach's theory of slabs</td>
<td>324</td>
</tr>
<tr>
<td>Appendix VIII., strength of slabs</td>
<td>326</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>INDEX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>329</td>
</tr>
</tbody>
</table>