CONTENTS

CHAPTER I

INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

Section

1. The Fundamental Problem of Integral Calculus................. 1
2. Numerical Evaluation of Integrals.............................. 3
3. Differential Equations of the First Order.................... 6
4. Linear Differential Equations of the First Order............. 11
5. Singular Solutions of First-order Equations.................... 13
6. Numerical Solution of Differential Equations of the First Order. 14
8. Linear Differential Equations of the First and Second Order with Constant Coefficients.................. 22
9. Hyperbolic Functions.. 27
10. Linear Differential Equations of the Second Order with Constant Coefficients—(Continued)................. 31
12. Linear Differential Equations of Higher Order with Constant Coefficients. Systems of Linear Equations.............. 37

CHAPTER II

SOME INFORMATION ON BESSEL FUNCTIONS

1. Bessel's Differential Equation and Bessel Functions of Zero Order 47
2. Bessel Functions of Higher Order................................. 55
3. Standard Forms of Bessel Functions.............................. 57
4. Special Properties of Some Bessel Functions.................... 60
5. Modified Bessel Functions...................................... 61
6. Tables and Notations... 62
7. Some Equivalent Forms of Bessel's Differential Equation...... 64

CHAPTER III

FUNDAMENTAL CONCEPTS OF DYNAMICS

1. Newton's Laws of Motion... 70
2. Addition and Multiplication of Vectors.......................... 71
3. Motion of a Single Mass Point................................ 74
4. Application of Newton's Law to a System of Mass Points..... 77
5. Mass Center (Center of Gravity)................................ 78
6. Motion of a Rigid Body... 82
CONTENTS

Section

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. The Gyroscope</td>
<td>85</td>
</tr>
<tr>
<td>8. Work and Energy</td>
<td>89</td>
</tr>
<tr>
<td>9. The Theorem of Virtual Displacements</td>
<td>94</td>
</tr>
<tr>
<td>10. d'Alembert's Principle</td>
<td>98</td>
</tr>
</tbody>
</table>

Chapter IV

ELEMENTARY PROBLEMS IN DYNAMICS

1. Motion of a Particle in a Resisting Medium | 111
2. Linear Motion of a Particle under Action of a Force Depending on the Position of a Particle | 113
3. Motion of a Pendulum | 115
4. Some Information concerning Elliptic Integrals and Elliptic Functions | 119
5. Linear Motion of a Particle with Elastic Restraint and Damping | 130
7. Forced Oscillation of a Mass with Damping | 137
8. Motion of a Particle under Action of Gravity and Air Resistance (the Ballistic Problem) | 139
9. Equation of Motion of an Airplane | 143
10. The Flight Path of an Airplane with High Stability and Small Moment of Inertia (Plughoid Motion) | 145
11. Singular Points of Differential Equations of the First Order | 150

Chapter V

SMALL OSCILLATIONS OF CONSERVATIVE SYSTEMS

2. Linear Oscillation of Two Coupled Masses | 166
3. Conservative System with Static Coupling. General Theory | 170
4. Orthogonality of the Principal Oscillations | 172
5. Example of a System with Three Degrees of Freedom | 178
6. The Kinetic and Potential Energies in Terms of the Principal Oscillations | 180
7. Forced Oscillations | 186
8. Solution of Algebraic Equations with Real Roots | 191
9. Solution of the Frequency Equation and Calculation of the Normal Modes by Use of Matrices | 196
10. Example of a Conservative System with Dynamic Coupling. Double Pendulum | 204
11. General Remarks on Systems with Dynamic Coupling | 207

Chapter VI

SMALL OSCILLATIONS OF NONCONSERVATIVE SYSTEMS

2. Example of a Nonconservative System. Elementary Theory of Wing Flutter | 220
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Dissipative Systems. The Analogy between Mechanical and</td>
<td></td>
</tr>
<tr>
<td>Electrical Oscillations</td>
<td>228</td>
</tr>
<tr>
<td>4. The Theory of the Vibration Damper</td>
<td>233</td>
</tr>
<tr>
<td>5. The Stability of Uniform Rotation. The Vertical Top</td>
<td>238</td>
</tr>
<tr>
<td>6. Stability Conditions for Oscillating Systems</td>
<td>242</td>
</tr>
<tr>
<td>7. Calculation of Complex Roots of Algebraic Equations</td>
<td>246</td>
</tr>
<tr>
<td>8. Longitudinal Stability of an Airplane</td>
<td>249</td>
</tr>
</tbody>
</table>

Chapter VII

THE DIFFERENTIAL EQUATIONS OF THE THEORY OF STRUCTURIES

1. Deflection of a String under Vertical Load | 260 |
2. String with Elastic Support | 266 |
3. Bending of Beams. General Theory | 267 |
4. Deflection of Beams. Beams on Elastic Foundation | 271 |
5. The Theory of the Suspension Bridge | 277 |
6. Problems of Harmonic Vibrations Reduced to Statical Problems | 283 |
7. Harmonic Vibration of a String under Tension | 284 |
8. Vibration of Beams. The Critical Speed of a Rotating Shaft | 286 |
9. Vibration of a Beam Carrying a Concentrated Mass | 290 |
10. Forced Vibration of a Uniform Cantilever Beam | 294 |
11. Buckling of a Uniform Column under Axial Load | 295 |
12. Buckling of a Tapered Column. Buckling of a Column under Its Own Weight | 299 |
13. Buckling of an Elastically Supported Beam | 304 |
14. Combined Axial and Lateral Load Acting on the Spar of an Airplane | |
15. Graphical Representation of the Bending Moment | 306 |
16. General Discussion of the Boundary Problems Encountered in This Chapter | 309 |
17. Determination of Characteristic Values by the Iteration Method | 313 |

Chapter VIII

FOURIER SERIES APPLIED TO STRUCTURAL PROBLEMS

1. Solution of the Differential Equation of a Beam with Elastic Support by Trigonometric Series | 323 |
2. Fourier Series and Fourier Coefficients | 325 |
3. Approximation of Arbitrary Functions by Fourier Series | 330 |
5. The Problem of a Uniform Beam with Elastic Support—(Continued) | 340 |
6. Beam of Infinite Span. Solution by Fourier Integral | 343 |
7. Forced Vibration of a Beam under Harmonic Load | 347 |
9. The Rayleigh-Ritz Method Applied to the Equilibrium of a Loaded Membrane | 359 |
CONTENTS

CHAPTER IX

COMPLEX REPRESENTATION OF PERIODIC PHENOMENA

Section
1. Steady and Transient State. .. 365
2. Vectorial Representation ... 366
3. The Concept of Impedance ... 370
4. Rules for Calculation of the Impedances of Electrical and Mechanical Systems ... 375
5. Superposition of Periodic Motions 378
6. Response to an Arbitrary Periodic Force. The Complex Form of Fourier Series ... 382

CHAPTER X

TRANSIENT PHENOMENA. OPERATIONAL CALCULUS

1. Application of the Fourier Integral to Nonperiodic Phenomena ... 388
2. The Unit-step and the Unit-impulse Function 394
3. Indicial Admittance and Response to Unit Impulse 397
4. Duhamel's Integral ... 405
5. Application of Fourier Integrals to the Determination of the Response to Unit Step. Bromwich's Integral 405
6. Carson's Integral Equation ... 407
7. The Notion of Operators ... 409
8. Operational Rules ... 411
9. Some Fundamental Operators ... 414
10. Expansion Methods of the Operational Calculus 416
11. Response of an Electric Network to the Sudden Application of a Constant Voltage 420
12. Response of Undamped Mechanical Systems to Suddenly Applied Forces ... 423
14. Response of a Network to a Suddenly Applied Alternating Voltage ... 433

CHAPTER XI

EQUATIONS OF FINITE DIFFERENCES APPLIED TO ENGINEERING

1. The Calculus of Finite Differences ... 437
2. Linear Difference Equations with Constant Coefficients 439
3. Application to Continuous Beams ... 442
4. Buckling of a Rectangular Lattice Truss ... 445
5. Voltage Drop in a Chain of Electric Insulators 451
6. Critical Speeds of a Multicylinder Engine ... 453
7. Waves in a Mechanical Chain ... 461
8. Electric-wave Filters ... 465

WORDS AND PHRASES ... 469
ANSWERS ... 477
INDEX ... 491