CONTENTS

VOL. I. THE ELEMENTS

ALUMINUM

ANTIMONY

CONTENTS

ARSENIC

Detection— with hydrogen sulphide, volatility of arsenous chloride, traces; distinction between arsenates and arsenites, 34. Estimation, 34. Preparation and solution of the sample—pyrites ore, arsenopyrites, arsenous oxide, arsenic acid, alkali arsenates arsenic in sulphuric acid, in hydrochloric acid, in organic matter; lead arsenate; zinc arsenite; water soluble arsenic in insecticides; arsenic in mispickel; in iron; in copper 31-37. Separations— isolation of arsenic by distillation, Knorr's distillation method separation as sulphide from antimony and tin, etc., 37-40. Gravimetric methods—determination as trisulphide; as magnesium pyroarsenate, 41. Volumetric methods by oxidation with standard iodine; potassium iodate method; precipitation as silver arsenate, 44-45. Small amounts of arsenic by the Gutzeit method— in sulphuric, hydrochloric, and nitric acids; in iron, pyrites, cinders, bauxite, phosphates, phosphoric acid, salts, baking powder, organic matter, canned goods, meats, etc., standard method of the General Chemical Company, 46-53. Marsh test for arsenic; analysis of commercial arsenic (As₂O₃), 53-55. Arsenic in iron and steel and in copper, 55.

BARIUM

Detection— as barium chromate, with calcium sulphate or strontium sulphate, by precipitation as fluorosilicate, flame test, spectrum, 56. Preparation and solution of the sample— ores, sulphates, sulphides, carbonates; salts soluble in water; organic matter; insoluble residue, 57. Separations— the alkaline earths; introductory sources of loss, preliminary tests; separation from members of previous groups; separation of the alkaline earths from magnesia and the alkalies by the oxalate and sulphate methods; separation of the alkaline earths from each other; separation from molybdenum; separation from phosphoric acid, 58-62. Gravimetric methods— determination as chromate; as sulphate; as carbonate, 63-64. Volumetric methods— titration of the barium salt solution with dichromate; reduction with ferrous salt and titration with permanganate; potassium iodide method; acid titration of the carbonate. Analysis of barytes and wetherite; commercial valuation of the ores, 65-67.

BERYLLIUM (GLUCINUM)

BISMUTH

Detection— as bismuth oxychloride, and by reduction, 70. Estimation, 70. Preparation and solution of the sample— ores, cinders; alloys, bearing metal, lead bullion and refined lead, 70-71. Separations from— members of the ammonium hydroxide, sulphide and carbonate groups and from the alkalies; separation from arsenic, antimony, tin, molybdenum, tellurium and selenium; mercury, lead, copper and cadmium, 72-73. Gravimetric methods— by precipitation and determination as the basic chloride, BiOCl; as the oxalate, Bi₂O₃, (a) by precipitation as the basic nitrate, (b) carbonate, (c) hydroxide, determination as bismuth sulphide, Bi₂S₃; as metallic bismuth by reduction with potassium cyanide; by deposition of the metal electrolytically, 73-76. Volumetric methods— by titration of the oxalate with permanganate; cinehomine potassium iodide colorimetric method; bismuth iodide colorimetric comparison, 76-78. Bismuth in lead bullion, in alloys, ores, mattes, 78-80.
CONTENTS

BORON

Detection—flame test, borax bead and turmeric tests, 81. Estimation, 81. Preparation and solution of the sample—boric acid in silicates and enamels; boronatrocalcite, borosicate, boracite, calcium borate; borax and boric acid; boric acid in mineral water; in carbonates; in foods—milk, butter, meat, etc., 82-83. Gravimetric methods—distillation of methyl borate and fixation with lime, 84-85. Volumetric methods—titration of boric acid in presence of mannitol or glycercrole in evaluation of borax or boric acid. Chapin’s method. Robin’s test for traces, 86-91.

BROMINE

Detection—by silver nitrate, by absorption in carbon tetrachloride or disulphide, by magenta test, bromates, 92. Estimation, 93. Preparation and solution of the sample—bromides, bromine in organic matter, 93. Separation of bromine from the heavy metals, from silver, cyanides, chlorine and iodine, 93-94. Gravimetric methods—precipitation as silver bromides, (1) hydrobromic acid and bromides of the alkaline earths and alkalies; (2) treatment in presence of heavy metals, 94. Volumetric methods—determination of free bromine with potassium iodide; soluble bromides by chlorine method, Volhard’s method; traces of bromine, 94-96. Arsenous acid method for bromates, 96. Analysis of crude potassium bromide and commercial bromine, 96-97. Determination in mineral water; separation from iodine, 97.

CADMIUM

CALCIUM

CARBON

CONTENTS

CERIUM AND THE OTHER RARE-EARTH METALS

Table of properties, minerals, qualitative tests, detection of cerium, 133–133b. Quantitative analysis, decomposition of minerals, separations—rare earths and thorium from other metals, separation from thorium, separation of cerium from rare earth metals, 134–135. Estimation of cerium—gravimetric and volumetric, 136. Estimation of other rare earths—estimation of the sum of the rare earths other than ceria, estimation of the cerium and yttrium group, estimation of the individual earths, 137. Technical methods—cerium in minerals, ceria in thorium and thorium nitrate, detection of didymium in cerium salts, 138.

CHLORINE

CHROMIUM

Detection—test with barium salt, hydrogen peroxide, reducing agents, ether, diphenyl carbazide, 156. Estimation, 156. Preparation and solution of the sample—genera1 procedures for decomposition of refractory materials, special procedures—high silica ores, chrome iron ores, iron and steel, 157–158. Separations—chromium from iron and aluminum, 134. Gravimetric methods—precipitation of chromic hydroxide

COBALT

COPPER

CONTENTS

FLUORINE

GOLD

INDIUM, SCANDIUM, THALLIUM

IODINE

Detection—element, free iodine characteristics, iodide, iodate, 236. Estimation—occurrence, 236. Preparation and solution of the sample, iodides of silver, copper, mercury, lead, etc., iodates, free iodine (commercial crystals), iodine or iodides in water, organic substances, mineral phosphates, 236-237. Separations—iodine from heavy metals, from bromine or from chlorine, separation from chlorine and bromine—palladous iodide method, 238-239. Gravimetric methods—precipitation of silver iodide, determination as palladous iodide, 239. Volumetric methods—hydriodic acid and iodides by thiosulphate or by arsenite titration, decomposition by ferric salts, decomposition with potassium iodate, nitric acid method of Fresenius, hydrogen peroxide—phosphoric acid method, chloric method of Mohr, Volhard’s method, 239-243. Determination of iodates, periodates, and iodates with periodates in a mixture, 244-245. Determination of iodine in mineral waters, 245.

IRON

Detection—ferric iron, hydrochloric acid solution, sulphocyanate, ferrocyanide, salicylic acid, sodium peroxide tests; distinction between ferrous and ferric salts, 246. Estimation—occurrence, 246. Preparation and solution of the sample—solubilities, soluble iron salts, sulphide and oxide ores, iron ore briquettes, silicates, iron and steel, separations—general procedure; special cases, ether method, 247-248. Gravimetric methods—determination as oxide, Fe₂O₃; Cupferron method, 249-250. Volumetric methods—general considerations, by oxidation, the iron having been reduced—titration with potassium dichromate, dichromate diphenylamine method for iron, 255.
CONTENTS

LEAD

MAGNESIUM

MANGANESE

Detection—general procedure, manganese in soils, minerals, vegetables, etc., borax test, sodium carbonate and nitrate tests, 295. Estimation—occurrence, 295. Preparation and solution of the sample—solubilities, decomposition of ores, sulphides, slags, iron ore, alloys, manganese bronze, ferro-titanium alloy, ferro-chromium, metallic chromium, ferro-aluminum, vanadium alloys, molybdenum alloys, tungsten alloys, silicon alloys, iron, steel and pig iron, 296–297. Separations—removal of the members of the hydrogen sulhide group, separation of manganese from the alkaline earths and the alkalies, from nickel and cobalt; basic acetate method for removal of iron and aluminum, 298–300. Gravimetric method— isolation of manganese as the dioxide,
CONTENTS

MERCURY

MOLYBDENUM

NICKEL

NITROGEN
Detection—organic nitrogen, nitrogen in gas mixtures. Ammonia, free and combined, tests for. Nitric acid—ferrous sulphate test, diphenylamine test, copper test, phenolsulphonic acid test. Detection of nitrous acid—by acetic acid, by potassium permanganate, 337–338. Estimation—occurrence, composition of air; free nitrogen,
CONTENTS

PHOSPHORUS

PLATINUM

PALLADIUM.—Detection—tests with alkalis, ammonia, mercuric cyanide, potassium iodide, hydrogen sulphide, etc., 382–383. Estimation—Preparation and solution of the sample. Separations—palladium from platinum and iridium, from silver and gold,
CONTENTS

RARE ELEMENTS OF THE ALLIED PLATINUM METALS

Assay Methods for Platinum Ores, 399.

Comparative reaction table, 400.

POTASSIUM, SODIUM AND OTHER ALKALIES

Detection—sodium, potassium, 401; lithium, rubidium and cesium, 402-403. Estimation, 404. Solution of the sample—procedure for rocks and other insoluble mineral products, procedure for soils, fertilizers, organic compounds, ashes of plants, saline residues, soluble salts and brines, 404-405. Separation—alkali metals from other constituents—hydrogen sulphide and ammonium sulphide groups of metals; separation from silica; from iron, alumina, chromium, titanium, uranium, phosphoric acid; separation from sulphates; from barium, calcium, strontium; separation from iron, alumina, chromium, barium, calcium, strontium, phosphates, sulphates, etc., in one operation; separation from boric acid; separation from magnesium—mercuric oxide method, barium hydroxide method, ammonium phosphate method; separation of the alkali metals from one another—separation of sodium from potassium; lithium from sodium and potassium; lithium and sodium from potassium, rubidium and cesium, 405-408. Methods for the determination of sodium—as sodium chloride, as sodium sulphate, difference method, 409-410. Methods for the determination of potassium—as chloroplatinate, modified chloroplatinate method, Lindo-Gladding method, perchlorate method, other methods, 410-413. Determination of sodium and potassium by indirect method. Determination of magnesium, sodium and potassium in presence of one another, 413. Methods for determining lithium—determination as lithium chloride, as lithium sulphate, Gooch method, Rammeleberg method, spectroscopic method, 413-414. Determination of sodium, potassium, and lithium in the presence of one another. Determination of the alkalies in silicates by J. Lawrence Smith method, 416. Hydrofluoric method, 417. Alkalies in alunite, 417. Volumetric methods, 418.
CONTENTS

RADIUM

SELENIUM AND TELLURIUM

SILICON

SILVER

THE FIRE ASSAY FOR GOLD AND SILVER

Definitions—fire assaying, metallurgical products. General outline—reagents, furnaces and equipment, the assay—ton system, sampling, balances and weights, the crucible assay; lead reduction with oxidized ores, with sulphide ores; amount of litharge, of carbonate, of borax glass; assay slags, 466–475. Weighing and mixing the charge, fusing the charge, crucible charges, 475–477. The scorification assay, celpellation, parting, 477–481. The assay of bullion, 482. The assay of gold and silver bullion;
CONTENTS

silver bullion or Dore bullion assay, lead ratio in cupellation; gold bullion assay, U. S. Mint method, 484-485. The assay of cyanide solutions, evaporation in lead tray, the Chiddey method, special method of assay. General outline, 486-488.

STRONTIUM

SULPHUR

THORIUM

CONTENTS

TIN

TITANIUM

TUNGSTEN, TANTALUM AND COLUMBIUM

CONTENTS

URANIUM

Detection—general procedure—uranous salts, uranyl salts, 578. Estimation—occurrence, industrial application, 578. Preparation and solution of the sample—solubilities—element, oxide, salts; solution of ores, 579. Separations—uranium from copper, lead, bismuth, arsenic, antimony, and other members of the hydrogen sulphide group; separation of uranium from iron and from elements having water insoluble carbonates; separation from vanadium, 579–580. Gravimetric determinations of uranium as the oxide, \(\text{U}_2\text{O}_3 \), 581. Volumetric determination of uranium by reduction and subsequent oxidation, 581. Determination of uranium in carnotite, 582. Determination of uranium in steel and ferro-uranium, 582a.

VANADIUM

Detection—tests with sulphide, reducing agents, hydrogen peroxide, ammonium chloride, distinction from chromium, detection in steel, 583, 584. Estimation—occurrence and industrial application, 584. Preparation and solution of the sample—solubility of the element, its oxides and salts; general procedure for decomposition of ores of vanadium, ores high in silica, products low in silica, iron, steel and alloys, 585, 586. Separations—general procedure, removal of arsenic, molybdenum, phosphoric acid, separation of vanadium from chromium, 586, 587. Gravimetric methods—determination of vanadium by precipitation with mercurous nitrate; by precipitation with lead acetate, 587, 588. Volumetric methods—reduction to vanadyl condition and oxidation with potassium permanganate, reduction with zinc followed by permanganate titration; determination of vanadium in steel; determination of molybdenum and vanadium in presence of one another; determination of vanadium, arsenic or antimony in presence of one another by Edgar’s method; determination of vanadium and iron in presence of one another; iodometric method for estimation of chromic and vanadic acids in presence of one another; determination of vanadium in ferro-vanadium, methods of the Vanadium Company of America—general procedure, vanadium in ores; in steel; in steel containing chromium; uses of vanadium in steel; in cupro-vanadium; in brasses and bronzes, 589–590. Volumetric-phospho-molybdate method, in mine and crude mill samples. Preparation of the Gooch crucible, 590a–590d.

ZINC

Detection of zinc, 597. Estimation, 597. Preparation of the sample—moisture determination in the pulp, 598. Separations—from silica, cadmium, arsenic, antimony, bismuth, copper, iron, alumina, manganese, nickel and cobalt, 598, 599. Methods of analysis—Gravimetric methods—weighing as the oxide, electrolytic procedure, 599. Volumetric methods—ferrocyanide titration of the acid solution, separating iron, aluminum and manganese with ammonia and bromine; titration of the alkaline solution—procedure for common ores; procedure for copper-bearing ores; procedure for material containing cadmium; for material containing carbonaceous matter; procedure for material containing metallics; general notes, 600–603. Standard method of the New Jersey Zinc Company—titration in acid solution—separating zinc as sulphide; standardization of the ferrocyanide solution; procedure with material containing insoluble zinc; discussion on separating zinc as zinc sulphide and titrating in acid solution, 603–607. Rapid method for the determination of zinc using an outside indicator of uranium salt, 607a–b. Determination of small amounts of zinc, 607. Special methods—determination of metallic zinc in zinc dust, 607. Precautions, 608. Determination of impurities in spelter; lead by electrolytic and “lead acid” methods; iron by colorimetric

ZIRCONIUM

PART II

QUALITATIVE TESTS OF SUBSTANCES

PART III

TABLES AND USEFUL DATA

1. Melting-points of chemical elements, 658. 11, 111. Temperature standards, 658. IV. Electromotive arrangement of the elements, 659. SPECIFIC GRAVITY TABLES OF THE ACIDS AND ALKALIES, 660-677. V. Hydrochloric acid—Ferguson, 660. VI. Hydrochloric acid—Lunge and Marshlewski, 662. Constant boiling-points, 662. VII. Nitric acid—Ferguson, 663. VIII. Nitric acid—Lunge and Rey, 665. IX. Phosphoric acid—Huger, 667. X. Sulphuric acid—Ferguson and Talbot, 668. XI. Sulphuric acid—Bishop, 672. XII. Acetic acid—Oudemans, 674. XIII. Melting-points of acetic acid—Rudorff, 674. XIV. Aqua ammonia—Ferguson, 674. XV. Sodium hydroxide—Lunge, 676. XVI. Vapor tension of water in milligrams of mercury, from -2° to +30° C.—Regnault, Broch and Weihe, 678. XVII. Useful data of the more important inorganic compounds—Meeklejohn, 679. XVIII. Conversion factors—Scott and Meeklejohn, 685. XIX. Comparison of centigrade and Fahrenheit scale, 700. XX. Relation of Baumé degrees to specific gravity and the weight of one U. S. gallon at 60° F., 701. XXI. Comparison of customary units of weight and measure with the metric system, 702. XXII. Table of constants for certain gases and vapors, 704. XXIII. Specific gravity of gases, 706.

Useful memoranda—conversion formulas for gas volumes, petot formula for velocity of gas flow, other data, formula for calculating areas of plane figures—triangle, rectangle, parallelogram, trapezoid, circle. Formula for calculating volumes, regular prism, right circular cylinder, regular pyramid, right circular cone, sphere, capacity of barrel in gallons, 707. Definitions—terms used as heat units, electrical units, photometry—methods of determining specific gravity of solids and liquids, method of determining candle power, 708. du Pont inter conversion tables, volume, weight, energy, 710-712.

REAGENTS

This chapter includes the common reagents used in analytical procedures arranged alphabetically. The method of standardization is given for the more important solutions. The preparation of indicators is placed in the latter portion of the chapter, 725-746.

GENERAL REFERENCES